MATLAB®
Data Import and Export

7

MATLAB

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Data Import and Export
© COPYRIGHT 2009-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022
March 2023

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)

Rereleased for MATLAB 8.5.1 (Release 2015aSP1)

Revised for MATLAB 9.0 (Release 2016a)
Revised for MATLAB 9.1 (Release 2016b)
Revised for MATLAB 9.2 (Release 2017a)
Revised for MATLAB 9.3 (Release 2017b)
Revised for MATLAB 9.4 (Release 2018a)
Revised for MATLAB 9.5 (Release 2018b)
Revised for MATLAB 9.6 (Release 2019a)
Revised for MATLAB 9.7 (Release 2019b)
Revised for MATLAB 9.8 (Release 2020a)
Revised for MATLAB 9.9 (Release 2020b)
Revised for MATLAB 9.10 (Release 2021a)
Revised for MATLAB 9.11 (Release 2021b)
Revised for MATLAB 9.12 (Release 2022a)
Revised for MATLAB 9.13 (Release 2022b)
Revised for MATLAB 9.14 (Release 2023a)

—~ o~ o~ —~

Contents

File Opening, Loading, and Saving

1]

Supported File Formats for Import and Export 1-2
Importing Files Programmatically 1-2
Workflows for Specialized Data Formats 1-5

Import Images, Audio, and Video Interactively 1-7
Viewing the ContentsofaFile 1-7
Specifying Variables 1-7
Generating Reusable MATLABCode 1-9

Import or Export a Sequence of Files 1-10

MATIAB Example DataSets 1-11
Observational Dataot 1-11
Image Data 1-12
Geographic Data i 1-15
Videoand AudioData i 1-16

Save and Load Parts of Variables in MAT-Files 1-18
Save and Load Using the matfile Function 1-18
Load Parts of Variables Dynamically 1-19
Avoid Inadvertently Loading Entire Variables 1-20
Partial Loading and Saving Requires Version 7.3 MAT-Files 1-20

MAT-File Versions 1-22
Overview of MAT-File Versions i, 1-22
Save to Nondefault MAT-File Versionc..uuiuiuunnnn. 1-23
Data CompressSion vttt et et e 1-23
Accelerate Save and Load Operations for Version 7.3 MAT-Files 1-24

Growing Arrays Using matfile Function 1-25

Unexpected Results When Loading Variables Within a Function 1-27

Create Temporary Files 1-29

2|

Import Text Files 2-2
Import DataasTables i 2-2
Import Data as Timetables 2-2

vi

Contents

Import Dataas Matrices
Import Dataas Cell Arrayst
Import Data as SIring ATraysccvii it
Import Data with Import Options for Additional Control
Import Data Interactively

3|

Read Text File Data Using Import Tool 2-6
Select Data Interactively 2-6
Import Data from Multiple Text Files 2-8

Import Dates and Times from Text Files 2-10

Import Numeric Data from Text Files into Matrix 2-14
Import Comma-SeparatedData 2-14
Import Delimited NumericData 2-14

Import Mixed Data from Text Fileinto Table 2-16

Import Block of Mixed Data from Text File into Table or Cell Array 2-19

Write Datato Text Files i, 2-22
Export Tableto Text File i, 2-22
Export Cell Arrayto Text File 2-23
Export Numeric Arrayto Text File 2-24

Writetoa Diary File 2-26

Read Collection or Sequence of Text Files 2-27

Import Block of Numeric Data from Text File 2-30

Spreadsheets

Import Spreadsheets 3-2
Import Spreadsheet Data Using the Import Tool 3-2
Import Spreadsheet Data Using readtable 3-2
Import Spreadsheet Data as Other Data Types 3-3

Read Spreadsheet Data Using Import Tool 3-4
Select Data Interactively 3-4
Import Data from Multiple Spreadsheets 3-5
Paste Data from Clipboard 3-6

Read Spreadsheet Data into Array or Individual Variables 3-7

Read Spreadsheet DataintoTable 3-9

Read Collection or Sequence of Spreadsheet Files 3-12

Write Data to Excel Spreadsheets
Write Tabular Data to Spreadsheet File

Write Numeric and Text Data to Spreadsheet File

Disable Warning When Adding New Worksheet
Format Cells in Excel Files

Define Import Options for Tables

4

Import Text Data Files with Low-Level I/O
Overview
Reading Data in a Formatted Pattern

Reading Data Line-by-Line

Testing for End of File (EOF)

Opening Files with Different Character Encodings

Import Binary Data with Low-Level I/O
Low-Level Functions for ImportingData
Reading Binary DatainaPFile
Reading Portionsofa File
Reading Files Created on Other Systems

Export to Text Data Files with Low-Level 1/0 . ..
Write to Text Files Using fprintf

Append to or Overwrite Existing Text Files . . .
Open Files with Different Character Encodings

Export Binary Data with Low-Level 1/O

Low-Level Functions for Exporting Data
Write Binary DatatoaFile
Overwrite or Append to an Existing Binary File

Create a File for Use on a Different System . . .

Write and Read Complex Numbers

Internet of Things (IoT) Data

S|

Aggregate Data in ThingSpeak Channel

Regularize Irregularly Sampled Data

Plot Data Read from ThingSpeak Channel

Read ThingSpeak Data and Predict Battery Discharge Time with Linear

Fit

5-2

viii

Contents

6/

Importing Images 6-2
Getting Information About Image Files 6-2
Reading Image Data and Metadata from TIFF Files 6-3

ExportingtoImages i
Exporting Image Data and Metadata to TIFF Files

7

Import CDF Files Using Low-Level Functions 7-2
Represent CDF Time Values 7-4
Import CDF Files Using High-Level Functions 7-5
Exportto CDF Files 7-8
Map NetCDF API Syntax to MATLABSyntax 7-11
Import NetCDF Files and OPeNDAPData 7-13
MATLAB NetCDF Capabilities 7-13
Security Considerations When Connecting to an OPeNDAP Server 7-13
Read from NetCDF File Using High-Level Functions 7-13
Find All Unlimited Dimensions in NetCDF File 7-15
Read from NetCDF File Using Low-Level Functions 7-16
Resolve Errors Reading OPeNDAPData 7-20
Exportto NetCDF Files 7-21
MATLAB NetCDF Capabilities 7-21
Create New NetCDF File from Existing File or Template 7-21
Merge Two NetCDF Fileso e 7-22
Write Data to NetCDF File Using Low-Level Functions 7-24
Importing Flexible Image Transport System (FITS) Files 7-27
Import HDF5 Files i, 7-28
OVEIVIEW . . .o 7-28
Import Data Using High-Level HDF5 Functions 7-28
Import Data Using Low-Level HDF5 Functions 7-33
Read HDF5 Data Set Using Dynamically Loaded Filters 7-33
Exportto HDF3 Files 7-34
OVEIVIEWo 7-34
Export Data Using MATLAB High-Level HDF5 Functions 7-34
Export Data Using MATLAB Low-Level HDF5 Functions 7-35
Write HDF5 Data Set Using Dynamically Loaded Filters 7-40

Work with Non-ASCII Characters in HDF5 Files 7-41
Create Data Set and Attribute Names Containing Non-ASCII Characters

... 7-41
Create Variable-Length String Data Containing Non-ASCII Characters .. 7-42
Import HDF4 Files Programmatically 7-44
OVEIVIBW . ottt e e 7-44
Using the MATLAB HDF4 High-Level Functions 7-44
Read and Write Data Concurrently Using Single-Writer/Multiple-Reader
(SWMR) . .. 7-47
OVEIVIBW . ottt e 7-47
Requirements and Limitations 7-47
Enable SWMR Access for HDF5 File 7-47
Write to HDF5 File While Two ProcessesRead 7-48
Work with HDF5 Virtual Datasets (VDS) 7-52
OVETVIEW . . ittt e e 7-52
Createa Virtual Dataset 7-52
Work with Remotely Stored Virtual Datasets 7-52
Create Virtual Dataset from Datasets of Varying Sizes 7-53
Read and Write HDF5 Datasets Using Dynamically Loaded Filters 7-59
Install Filter Plugins i 7-59
Read Datasets Compressed with Third-Party Filters 7-60
Write Datasets Compressed with Third-Party Filters 7-60
Map HDF4 to MATLAB Syntax 7-64
Import HDF4 Files Using Low-Level Functions 7-65
About HDF4 and HDF-EOS 7-68
Exportto HDF4 Files 7-69
Write MATLAB Datato HDF4 File 7-69
Manage HDF4 Identifiers 7-70

Audio and Video

8|

Read and Write Audio Files 8-2
Record and PlayAudio 8-4
Record Audio 8-4
Play Audiot 8-6
Record or Play Audio within a Function 8-6
Read Video Files 8-8
Supported Video and Audio File Formats 8-12
Video Data in MATLAB e 8-12
Audio Datain MATLAB e 8-14

ix

Convert Between Image Sequences and Video 8-16

9

Import an XML File into a Document Object Model 9-2
The XML Document Object Model 9-2
Read an XML File Using the MAXP Parserc.vuuuuuunn. 9-3
Read an XML File Usingxmlread 9-4

Export a Document Object Model toan XML File 9-6
CreateaDOM Documentc it 9-6
Write a DOM Document Node to an XML File Using a MAXP DOMWriter

ObjeCt . .o e e 9-6
Write a DOM Document Node to an XML File Using xmlwrite 9-8
Update an Existing XML File 9-8

10|

Overview of Memory-Mapping 10-2
What Is Memory-Mapping? oot 10-2
Benefits of Memory-Mappingt 10-2
When to Use Memory-Mappingooviin ettt 10-3
Maximum Size of aMemory Mapt 10-4
Byte Orderingt 10-4

Map Fileto Memory 10-5
Create a Simple Memory Mapt 10-5
Specify Format of Your Mapped Data 10-6
Map Multiple Data Types and ATrayscovvvneeeunnnn... 10-6
SelectFiletoMap ... i e 10-8

Read from Mapped File 10-9

Write to Mapped File 10-14
Write to Memory Mapped as NumericArray 10-14
Write to Memory Mapped as Scalar Structure 10-15
Write to Memory Mapped as Nonscalar Structure 10-15
Syntaxes for Writing to Mapped File 10-16
Work with Copies of Your Mapped Data 10-17

Delete Memory Mapttt e 10-19
Ways to Deletea Memory Mapcovii it 10-19
The Effect of Shared Data Copies On Performance 10-19

Share Memory Between Applications 10-20

X Contents

Internet File Access and JSON

11|

Server Authentication 11-2
Server Authentication For RESTful Web Services 11-2
Server Authentication For HTTP Web Services 11-2
Create Header Fields for OAuth Authentication 11-3

Proxy Server Authentication 11-4
RESTful Web Services, 11-4
HTTP Web Servicesov vttt e n 11-4
Use MATLAB Web Preferences For Proxy Server Settings 11-4
Use System Settings For Proxy Server Settings 11-5

MATLAB and Web Services Security 11-6
MATLAB Does Not Verify Certificate Chains 11-6

Convert Data from Web Service 11-7

Download Web Pageand Files 11-10
Example — Use the webread Function 11-10
Example — Use the websave Function 11-10

Send Email e 11-11

Perform FTP File Operations 11-12

Display Hyperlinks in the Command Window 11-14
Create HyperlinkstoWeb Pages 11-14
Transfer Files Using FTP 11-14

Customize JSON Encoding for MATLAB Classes 11-15

Serial Port I/O

12

Serial Port Overview 12-2
What Is Serial Communication? 12-2
Serial Port Interface Standard 12-2
Supported Platforms 12-3
Connecting Two Devices with a Serial Cable 12-3
Serial Port Signals and Pin Assignments 12-3
Serial Data Format 12-6
Find Serial Port Information for Your Platform 12-9

Create Serial Port Object 12-13
Create a Serial Port Object 12-13
Serial Port Object Display, 12-13

Configure Serial Port Communication Settings 12-15

xi

Write and Read Serial Port Data 12-17

Rules for Completing Write and Read Operations 12-17
Writing and Reading TextData 12-17
Writing and Reading BinaryData 12-19
Use Callbacks for Serial Port Communication 12-21
Callback Properties e 12-21
Using Callbacks e 12-21
Use Serial Port Control Pins 12-22
Control Pins i 12-22
Signaling the Presence of Connected Devices 12-22
Controlling the Flow of Data: Handshaking 12-24
Transition Your Code to serialport Interface 12-26
Removed Functionality 12-26
Discover Serial Port Devices i 12-27
Connect to Serial Port Device i, 12-27
Readand Write i e 12-27
SendaCommandttt 12-28
Read a Terminated String 12-28
Flush Data from Memorycou it 12-29
SetTerminator i 12-30
Set UpacCallback Function 12-30
Read Serial Pin Status 12-30
Set Serial DTRand RTSPin States 12-31
Read Streaming Data from Arduino Using Serial Port Communication
.. 12-32
Troubleshooting Serial Port Interface 12-35
ISSUE . .o e 12-35
Possible Solutions e 12-35
Resolve Serial Port Connection Errors 12-38
ISSUE . .o 12-38
Possible Solutions 12-38
Serialport Warning - Unable to Read AllData 12-40
Serialport Warning - Unable to Read AnyData 12-41
Large Data
Getting Started with MapReduce 13-3
What Is MapReduce? e 13-3
MapReduce Algorithm Phases 13-3
Example MapReduce Calculation 13-4
Writea Map Function 13-9
Role of Map Function in MapReduce 13-9

xii Contents

Requirements for Map Function

Sample Map Functions

Write a Reduce Function

Role of the Reduce Function in MapReduce
Requirements for Reduce Function

Sample Reduce Functions . .

Speed Up and Deploy MapReduce Using Other Products

Execution Environment

Running in Parallel
Application Deployment . . .

Build Effective Algorithms with MapReduce

Debug MapReduce Algorithms
Set Breakpoint

Execute mapreduce

Step Through Map Function

Step Through Reduce Function

Analyze Big Data in MATLAB Using MapReduce

Find Maximum Value with MapReduce

Compute Mean Value with MapReduce

Compute Mean by Group Using MapReduce

Create Histograms Using MapReduce

Simple Data Subsetting Using MapReduce

Using MapReduce to Compute Covariance and Related Quantities . . .

Compute Summary Statistics by Group Using MapReduce

Using MapReduce to Fit a Logistic Regression Model

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

Compute Maximum Average HSV of Images with MapReduce

Getting Started with Datastore

What Is a Datastore?

Create and Read froma Datastore

Select Datastore for File Format or Application
Datastores for Standard File Formats
Datastores for Specific Applications

Custom File Formats

Nondeterministic Datastores

13-10
13-10

13-13
13-13
13-14
13-14
13-17
13-17
13-17
13-17
13-18
13-20
13-20
13-20
13-21
13-22
13-25
13-33
13-36
13-39
13-44
13-51
13-57
13-62
13-69
13-75
13-80
13-86
13-86
13-87
13-90
13-90
13-90

13-92
13-92

xiii

xiv

Contents

WorkwithRemote Data
AmMazon S3 e e
Azure Blob Storage e
Hadoop Distributed File System

Read and Analyze Large Tabular Text File
Read and Analyze Image Files
Read and Analyze MAT-File with Key-Value Data
Read and Analyze Hadoop Sequence File

Develop Custom Datastore
OVEIVIEW . o ot e
Implement Datastore for Serial Processing
Add Support for Parallel Processing
Add Support for Hadoop
Add Support for Shuffling
Add Support for WritingData
Validate Custom Datastore,

Testing Guidelines for Custom Datastores
Unit Tests . ..ot
Workflow Tests
Next Steps . .o

Develop Custom Datastore for DICOMData
Developing Custom Datastores
Class Definition i
Using the DICOMDatastore Class,

Set Up Datastore for Processing on Different Machines or Clusters .
Save Datastore and Load on Different File System Platform
Process Datastore Using Parallel and Distributed Computing

Apache Parquet Data Type Mappings
Numeric Data Typesot e e
Binary Data Types e
Date and Time Data Types ot
Nested Datao e e

Tall Arrays for Out-of-Memory Data
Whatisa Tall Array?ot
Benefits of Tall Arraysccuiiii i,
Creating Tall Tables i
Creating Tall Timetables
Creating Tall ATTays . . .o vv it e e e e
Deferred Evaluationuuinnn
Evaluation withgather
Saving, Loading, and Checkpointing Tall Arrays
Supporting Functions i

Deferred Evaluation of Tall Arrays
Display of Unevaluated Tall Arrays

13-105

13-108

13-110
13-110
13-111
13-113
13-114
13-115
13-116
13-118

13-119
13-119
13-125
13-126

13-127
13-127
13-127
13-131

13-133
13-133
13-134

13-136
13-136
13-139
13-141
13-144

13-147
13-147
13-147
13-147
13-148
13-149
13-149
13-150
13-151
13-152

13-153
13-153

Evaluation with gather

Resolve Errors with gather .

Example: Calculate Size of Tall Arrayc.coiunnnnnnn.

Example: Multi-pass Calcula

tions with Tall Arrays

Summary of Behavior and Recommendations

Index and View Tall Array Elements

Extract Top Rows of Array .

Extract Bottom Rows of Array

Indexing Tall Arrays
Extract Tall Table Variables

Concatenation with Tall Arraysc.c.oiiiinernnn...
Assignment and Deletion with Tall Arrays
Extract Specified Number of Rows in Sorted Order
Summarize Tall Array Contents
Return Subset of Calculation Results

Histograms of Tall Arrays

Visualization of Tall Arrays

Tall Array Plotting Examples

Grouped Statistics Calculation

s with Tall Arrays

Extend Tall Arrays with Other Products
Statistics and Machine Learning
Control Where Your Code Runs,

Work with Databases

Analyze Big Data in MATLAB Using Tall Arrays

Develop Custom Tall Array Algorithms
Reasons to Implement Custom Algorithms

Supported APIs

Background: Tall Array Blocks
Single-Step Transformation Operation
Two-Step Reduction Operation

Sliding-Window Operations
Control Output Data Type .

Coding and Performance Tipst ..

13-154
13-154
13-154
13-155
13-157

13-158
13-158
13-158
13-159
13-161
13-162
13-163
13-163
13-164
13-165

13-167

14

TCP/IP Communication Overview,

Create TCP/IP Client and Configure Settings
Create Object Using Host Name
Create Object Using IP Addressccviiiinnnennnn...

Set Timeout Property

Set Connect Timeout Property

Set Transfer Delay Property

14-3
14-3
14-3
14-4
14-4
14-5

xvi

Contents

View TCP/IP Object Properties

Write and Read Data over TCP/IP Interface
Write Data
Read Data . ..o
Acquire Data from Weather Station Server
Read Page from Website

Use Callbacks for TCP/IP Communication
Configure Connection in TCP/IP Explorer

Communicate Binary and ASCII Data to an Echo Server Using TCP/IP

Troubleshooting TCP/IP Client Interface
ISSUE . . e
Possible Solutions

Resolve TCP/IP Client Connection Exrrors
ISSUE . .o e
Possible Solutions o

Resolve TCP/IP Client Warning: Unable to Read AnyData
ISSUE . o e e
Possible Solutions e

15

Bluetooth Low Energy Communication Overview
Prerequisitesand Setup
Bluetooth Low Energy Concepts
Services, Characteristics, and Descriptors

Find Your Bluetooth Low Energy Peripheral Devices
Scan for DevVICeS oo
ConnecttoaDeviCeottt

Work with Device Characteristics and Descriptors
Access Device Characteristics
Access Device DesSCriptorsttt e

Collect Data from Fitness Monitoring Devices

Track Orientation of Bluetooth Low Energy Device

Troubleshooting Bluetooth Low Energy

ISSUE . oo e
Possible Solutions o

Bluetooth Communication

16|

Bluetooth Communication Overview 16-2
Bluetooth Communication 16-2
Supported Platforms 16-2

Configure Bluetooth Communication Settings 16-3
Discover Your Device 16-3
Connect to Your Device and View Properties 16-4

Transmit Data Using Bluetooth Communication 16-6

Use Callbacks for Bluetooth Communication 16-8
Callback Properties i 16-8
Using Callbacks 16-8

Troubleshooting Bluetooth Communication 16-10
ISSUE . o o 16-10
Possible Solutions 16-10

Resolve Bluetooth Connection Exrors 16-12
ISSUE . o o 16-12
Possible Solutions o 16-12

Resolve Bluetooth Warning: Unable to Read AnyData 16-14
ISSUE . o ot e 16-14
Possible Solutions i e 16-14

Resolve Bluetooth Warning: Unable to Read All Data 16-15
ISSUE . . o e 16-15
Possible Solutions i 16-15

Communicate with HC-06 over Bluetooth 16-16

Transition Your Code to bluetooth Interface 16-19
Removed Functionality 16-19
Discover Bluetooth Devices 16-20
Connect to Bluetooth Device 16-20
Writeand Read 16-20
Read Terminated String 16-21
Send Command 16-22
Writeand Read BackData 16-23
Read and Parse StringData 16-23
Flush Data from Memoryc.c. .t 16-23
Set Terminator e 16-24
Set Up Callback Function, 16-24

xvii

Hardware Manager

17|

Get Started with Hardware Manager 17-2
Discover Hardwaret 17-2
Add Hardware e 17-4

xviii Contents

File Opening, Loading, and Saving

* “Supported File Formats for Import and Export” on page 1-2

* “Import Images, Audio, and Video Interactively” on page 1-7

* “Import or Export a Sequence of Files” on page 1-10

+ “MATLAB Example Data Sets” on page 1-11

* “Save and Load Parts of Variables in MAT-Files” on page 1-18

* “MAT-File Versions” on page 1-22

* “Growing Arrays Using matfile Function” on page 1-25

» “Unexpected Results When Loading Variables Within a Function” on page 1-27
* “Create Temporary Files” on page 1-29

1 Fie Opening, Loading, and Saving

Supported File Formats for Import and Export

In this section...

“Importing Files Programmatically” on page 1-2
“Workflows for Specialized Data Formats” on page 1-5

The ideal workflow to import data into MATLAB depends on how your data is formatted as well as
your personal preferences. You can import data programmatically or use a specialized workflow. The
most common solution is to import data programmatically using a function tailored for your data.

When you import data into the MATLAB workspace, the new variables you create overwrite any
existing variables in the workspace that have the same name.

Importing Files Programmatically

MATLAB includes functions tailored to import specific file formats. Consider using format-specific
functions when you want to import an entire file or only a portion of a file. Many of the format-specific
functions provide options for selecting ranges or portions of data. Some format-specific functions
allow you to request multiple optional outputs.

This table shows the file formats that you can import and export from the MATLAB application.

File Content Extension Description Import Function |Export Function
MATLAB formatted MAT Saved MATLAB workspace |load save
data Partial access of variables in |matfile matfile
MATLAB workspace
Text any, including: |Delimited numbers readmatrix writematrix
CSV Delimited numbers, or a mix |textscan none
XT of text and numbers
Column-oriented delimited readtable writetable
numbers or a mix of text and
numbers readcell writecell
readvars
Plain text readlines writelines

1-2

Supported File Formats for Import and Export

File Content Extension Description Import Function |Export Function
Spreadsheet XLS Column-oriented data in readmatrix writematrix
XLSX worksheet or range of
XLSM spreadsheet readtable writetable
XLSB (Systems readcell writecell
with Microsoft®
Excel® for readvars
Windows® only)
XLTM (import
only)
XLTX (import
only)
ODS (Systems
with Microsoft
Excel for
Windows only)
Extensible Markup XML XML-formatted text readstruct writestruct
Language
readtable writetable
readtimetable |writetimetable
Parquet formatted data | PARQUET Column-oriented data in parquetread parquetwrite
Parquet format
Data Acquisition DAQ Data Acquisition Toolbox daqread none
Toolbox™ file
Scientific data CDF Common Data Format See “Common See cdflib
Data Format”
FITS Flexible Image Transport See “FITS Files” |See “FITS Files”
System
HDF HDF4 or HDF-EOS2 See “HDF4 Files” |See “HDF4 Files”
H5 HDF5 See “HDF5 Files” |See “HDF5 Files”
NC Network Common Data Form |See “NetCDF See “NetCDF
(netCDF) Files” Files”
Image data BMP Windows Bitmap imread imwrite
GIF Graphics Interchange
Format
HDF Hierarchical Data Format
JPEG Joint Photographic Experts
JPG Group
JP2 JPEG 2000
JPF
JPX
J2C
J2K

1-3

1 Fie Opening, Loading, and Saving

File Content Extension Description Import Function |Export Function
PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun® Raster
TIFF Tagged Image File Format
TIF
XWD X Window Dump
CUR Windows cursor resources |imread none
ICO Windows icon resources
Audio (all platforms) AU NeXT/Sun sound audioread none
SND
AIFF Audio Interchange File
Format
AIFC Audio Interchange File
Format, with compression
codecs
FLAC Free Lossless Audio Codec |audioread audiowrite
MP3 MPEG-1 Audio Layer III
MPEG-2 Audio Layer III
MPEG-2.5 Audio Layer III
0OGG Ogg Vorbis
OPUS Ogg Opus
WAV Microsoft WAVE sound
Audio (Windows) M4A MPEG-4 Part 3 AAC audioread audiowrite
MP4
any Formats supported by audioread none
Microsoft Media Foundation
Audio (Mac) M4A MPEG-4 Part 3 AAC audioread audiowrite
MP4
Audio (Linux®) any Formats supported by audioread none
GStreamer
Video (all platforms) AVI Audio Video Interleave VideoReader VideoWriter
M]2 Motion JPEG 2000
Video (Windows) MPG MPEG-1 VideoReader none
ASF Windows Media®
WMV

1-4

Supported File Formats for Import and Export

File Content Extension Description Import Function |Export Function
any Formats supported by
Microsoft DirectShow®
Video (Windows 7 or MP4 MPEG-4 VideoReader VideoWriter
later) M4V
MOV QuickTime® VideoReader none
any Formats supported by
Microsoft Media Foundation
Video (Mac) MP4 MPEG-4 VideoReader VideoWriter
M4V
MPG MPEG-1 VideoReader none
MOV QuickTime
any Formats supported by
QuickTime,
including .3gp, .392,
and .dv
Video (Linux) any Formats supported by your |VideoReader none
installed GStreamer plug-ins,
including .ogg
Triangulation STL Stereolithography stlread stlwrite
Low-level files any text format |Low-level binary text data fread fwrite
any Low-level binary fscanf fprintf
any text format |Formatted data from a text |textscan none
file or string

Workflows for Specialized Data Formats

Memory-Mapping for Binary Data

For binary data files, consider the “Overview of Memory-Mapping” on page 10-2. Memory-mapping
enables you to access file data using standard MATLAB indexing operations. Memory-mapping is a
mechanism that maps a portion of a file, or an entire file, on disk to a range of addresses within an
application's address space. The application can then access files on disk in the same way it accesses
dynamic memory. The principal benefits of memory-mapping are efficiency, faster file access, the
ability to share memory between applications, and more efficient coding.

Specialized Importing with MATLAB Toolboxes

MATLAB toolboxes perform specialized import operations. For example, use Database Toolbox™
software for importing data from relational databases. Refer to the documentation on specific
toolboxes to see the available import features.

Web Services for Reading and Writing Data

You can use web services such as a RESTful or WSDL to read and write data in an internet media
type format such as JSON, XML, image, or text. For more information, see:

1-5

1 Fie Opening, Loading, and Saving

+ “Web Services”
+ “Use WSDL with MATLAB”

Reading Data with Low-Level 10

If the format-specific functions cannot read your data and the specialized workflows do not fit your
needs, use low-level I/O functions such as fscanf or fread. Low-level functions allow the most
control over reading from a file, but they require detailed knowledge of the structure of your data.
This workflow is not commonly used.

See Also

Related Examples
. “Standard File Formats”

1-6

Import Images, Audio, and Video Interactively

Import Images, Audio, and Video Interactively

Import data interactively into MATLAB workspace.

In this section...

“Viewing the Contents of a File” on page 1-7
“Specifying Variables” on page 1-7
“Generating Reusable MATLAB Code” on page 1-9

Note For information on importing text files, see “Read Text File Data Using Import Tool” on page 2-
6. For information on importing spreadsheets, see “Read Spreadsheet Data Using Import Tool” on
page 3-4.

Viewing the Contents of a File

JL
Start the Import Wizard by clicking the Import Data =<1 button or calling uiimport.

To view images or video, or to listen to audio, click the < Back button on the first window that the
Import Wizard displays.

A\ Import Wizard EI@

Selectwariables to irmport using checkboxes
@ Create wvariables matching prewviews.
Create wectars frorm each colurmn using colurmn narmes,

Create wectors from each row using row names,

Wariables in ChTempirmylmage.jpg

i Marme Size Bytes Class Mo variable selected For preview,

Hz‘mylmage 630:600x3 1170000 uintd

Help < Back[Mext = [[] Gererate MATLAE code

The right pane of the new window includes a preview tab. Click the button in the preview tab to show
an image or to play audio or video.

Irmage Preview | mydrnage

Showe Irmage ‘

Specifying Variables

The Import Wizard generates default variable names based on the format and content of your data.
You can change the variables in any of the following ways:

1-7

1 Fie Opening, Loading, and Saving

1-8

* “Renaming or Deselecting Variables” on page 1-8
* “Importing to a Structure Array” on page 1-8

The default variable name for data imported from the system clipboard is A pastespecial.

If the Import Wizard detects a single variable in a file, the default variable name is the file name.
Otherwise, the Import Wizard uses default variable names that correspond to the output fields of the
importdata function. For more information on the output fields, see the importdata function
reference page.

Renaming or Deselecting Variables

To override the default variable name, select the name and type a new one.

Yariables in CATernphlogo.mat

Irnport MNarne Size Bytes Class
v EExpoMapFigurePns 1:4 32 double =
7 L 4343 14792 double
7 Hm B3 1440 double
7 FHE 43243 14792 double
7 B axen 1 2 double |E
7 FHfacet 121 8 double
7 Hlight Ll & double
7 sOUFCe =l 24 double
7 H« Tl 56 double
7 Hxq 1 56 double
7 Hh el 56 double *

To avoid importing a particular variable, clear the check box in the Import column.
Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start the Import
Wizard by calling uiimport with an output argument. For example, the sample file durer.mat
contains three variables: X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')
and click the Finish button, the Import Wizard returns a scalar structure with three fields:
durerStruct =
X: [648x509 double]
map: [128x3 double]
caption: [2x28 char]
To access a particular field, use dot notation. For example, view the caption field:
disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Structure Arrays”.

Import Images, Audio, and Video Interactively

Generating Reusable MATLAB Code

To create a function that reads similar files without restarting the Import Wizard, select the
Generate MATLAB code check box. When you click Finish to complete the initial import operation,
MATLAB opens an Editor window that contains an unsaved function. The default function name is
importfile.mor importfileN.m, where N is an integer.

The function in the generated code includes the following features:

For text files, if you request vectors from rows or columns, the generated code also returns
vectors.

When importing from files, the function includes an input argument for the name of the file to
import, fileToReadl.

When importing into a structure array, the function includes an output argument for the name of
the structure, newDatal.

However, the generated code has the following limitations:

If you rename or deselect any variables in the Import Wizard, the generated code does not reflect
those changes.

If you do not import into a structure array, the generated function creates variables in the base
workspace. If you plan to call the generated function from within your own function, your function
cannot access these variables. To allow your function to access the data, start the Import Wizard
by calling uiimport with an output argument. Call the generated function with an output
argument to create a structure array in the workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best results, use
the function name with a .m extension for the file name.

See Also
imread | VideoReader | audioread

More About

“Read Video Files” on page 8-8
“Read and Write Audio Files” on page 8-2
“Importing Images” on page 6-2

1-9

1 Fie Opening, Loading, and Saving

Import or Export a Sequence of Files

To import or export multiple files, create a control loop to process one file at a time. When
constructing the loop:

* To build sequential file names, use sprintf.

* To find files that match a pattern, use dir.

* Use function syntax to pass the name of the file to the import or export function. (For more
information, see “Choose Command Syntax or Function Syntax”.)

For example, to read files named filel. txt through file20.txt with importdata:

numfiles = 20;
mydata = cell(l, numfiles);

for k = 1l:numfiles
myfilename = sprintf('file%d.txt', k);
mydata{k} = importdata(myfilename);
end

To read all files that match *. jpg with imread:
jpegFiles = dir('*.jpg');

numfiles = length(jpegFiles);

mydata = cell(1l, numfiles);

for k = 1l:numfiles

mydata{k} = imread(jpegFiles(k).name);
end

1-10

MATLAB Example Data Sets

MATLAB Example Data Sets

MATLAB has hundreds of data sets included in the software installation spanning a variety of file
formats and sizes. These data sets are used in documentation examples and to demo software
capabilities. This topic summarizes useful data sets in a variety of formats, but it is not a

comprehensive list.

Observational Data

Filename

Description

How to Load

accidents.mat

Data on US traffic accidents and
fatalities in 2004 from the US
Department of Transportation.
The data covers all 50 states
and the District of Columbia.

File Size: 8 KB

Data Size: 51 rows, 17
variables

load accidents.mat

census.mat

US population data from 1790 -
1990.

File Size: 1 KB

Data Size: Two column vectors
with 21 elements

load census.mat

airlinesmall.csv

US domestic airline flight data
from 1987 - 2008.

File Size: 11,747 KB

Data Size: 123,523 rows, 29
variables

See “Analyze Big Data in
MATLAB Using Tall Arrays” on
page 13-188 for an example that
loads and processes this data.

patients.mat

Medical patient information for
100 fictional patients.

File Size: 3 KB

Data Size: 100 rows, 10
variables

load patients.mat

outages.csv

Data on electric utility outages
in the US.

File Size: 99 KB

Data Size: 1,468 rows, 6
variables

Load the CSV data as a table:

T = readtable('outages.csv')|;

1-11

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

penny.mat

A detailed 3-D image of the
surface of a US penny.

File Size: 2 KB

Data Size: 128-by-128 matrix

To view a surface plot of the
penny, use the command:

penny

For more information, read the
script:

edit penny.m

seamount.mat

A seamount is an underwater
mountain. The data set consists
of a set of longitude (x) and
latitude (y) locations, and
corresponding seamount
elevations (z) measured at those
coordinates.

File Size: 2 KB

Data Size: Three column
vectors with 294 elements.

load seamount.mat

wind.mat

3-D data on air currents over
North America. The data
consists of (x,y,z) position
components and (u,v,w)
velocity components.

File Size: 142 KB

Data Size: Six matrices of size
35-by-41-by-15

load wind.mat

Image Data

Filename

Description

How to Load

ngc6543a.jpg

This NASA Hubble Space
Telescope image shows one of
the most complex planetary
nebulae ever seen, NGC 6543,
nicknamed the "Cat's Eye
Nebula." Hubble reveals
surprisingly intricate structures
including concentric gas shells,
jets of high-speed gas and
unusual shock-induced knots of
gas.

File Size: 27 KB

Image Size: 600 x 650

I = imread('ngc6543a.jpg"');
imshow(I)

1-12

MATLAB Example Data Sets

Filename

Description

How to Load

streetl.jpg

A picture of a city street
including cars, pedestrians,
signs, and buildings.

File Size: 37 KB

Image Size: 640 x 480

I = imread('streetl.jpg');
imshow(I)

street2.jpg

Rl

I

A picture of a busy city
intersection.

File Size: 39 KB
Image Size: 640 x 480

I = imread('street2.jpg');
imshow(I)

mri.mat An MRI data set that contains |load mri.mat
27 image slices of a human imshow(D(:,:,:,1),map)
head. The images are arranged F nf b
' into a 4-D array of size 128- p or more information, see
AR bv-128-bv-1-by-27 Techniques for Visualizing
- y ym2hy-ad Scalar Volume Data”.
File Size: 130 KB
Image Size: 302 x 221
durer.mat An image of Albrecht Diirer's load durer.mat

Melancolia. Can you find the
magic square matrix?

File Size: 273 KB
Image Size: 683 x 741

imshow(X,map)

A colorful picture of several
varieties of peppers.

File Size: 281 KB
Image Size: 512 x 384

I = imread('peppers.png');
imshow(I)

1-13

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

corn.tif

A TIF file containing three
images of corn (indexed, RGB,
and grayscale).

File Size: 226 KB

Image Size: 312 x 415

View the indexed version of the
image.

[corn_indexed,map] = imread(
imshow(corn_indexed,map)

View the RGB version of the
image.

corn_rgb = imread('corn.tif'
imshow(corn_rgb)

View the grayscale version of
the image.

corn_gray = imread('corn.tif|

imshow(corn_gray)

flujet.mat

An image of a simulation of an
astrophysical jet experiencing
turbulence.

File Size: 21 KB

Image Size: 474 x 493

load flujet.mat
imshow(X,map)

An X-ray image of a human
spine.

File Size: 33 KB
Image Size: 664 x 460

load spine.mat
imshow(X,map)

mandrill.mat

A colorful picture of a mandrill.

File Size: 184 KB

Image Size: 674 x 573

load mandrill.mat
imshow(X,map)

1-14

'corn.tif"',

,2);

MATLAB Example Data Sets

Geographic Data

Filename Description How to Load

earth.mat A picture of earth. load earth.mat
imshow (X, map)

File Size: 32 KB
Image Size: 424 x 350

NOAA altitude data for New }oad cape.mat
England, including Cape Cod. |imshow(X,map)

File Size: 37 KB
Image Size: 534 x 453

An image of the earth. This View the earth image:
image can be combined with . .
cloudCombined. jpg to view a |E = imread(’landOcean.jpg’);
map of the earth with cloud AerE]

Cover. View the cloud cover image:
File Size: 261 KB C = imread('cloudCombined.jpg');
imshow(C)
Image Size: 2048 x 1024
cloudCombined. jpg An image of cloud coverage on |>e€ “Changing Transparency of

Images, Patches or Surfaces”
for an example that overlays
both images with transparency.

the earth. This image can be
combined with landOcean. jpg
to view a map of the earth with
cloud cover.

File Size: 810 KB
Image Size: 2048 x 1024

tsunamis.xlsx Data on tsunami occurrences, |T = readtable('tsunamis.xlsx|");
including locations. geobubble(T.Latitude,T.Longijtude, T.MaxH

File Size: 25 KB

Data Size: 162 rows, 20

variables
topo.mat Earth topography data, courtesy |See “Displaying Topographic
of the NOAA. Data”.

File Size: 115 KB

Data Size: Altitude data is a
180-by-360 matrix

1-15

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

usapolygon.mat

Latitude and longitude data for
the perimeter of the contiguous
United States.

File Size: 17 KB

Data Size: Two vectors with
4,205 elements

load usapolygon.mat

usastates.mat

Latitude and longitude data for
each state in the contiguous
United States. The data contains
a structure array with three
fields: Lat, Lon, and Name.

File Size: 45 KB

Data Size: Structure array of
size 49-by-1

load usastates.mat

Video and Audio Data

Filename

Description

How to Load

shuttle.avi

Video of a space shuttle launch
without audio, courtesy of
NASA.

File Size: 1,648 KB
Video Length: 4 s

To watch the video on your
computer:

winopen('shuttle.avi')

xylophone.mp4
xylophone.mpg

Video of a xylophone being
played. The MPG version has
audio.

File Size: 465 KB (mp4) and
645 KB (mpg)

Video Length: 4 s

To watch the videos on your
computer:

winopen('xylophone.mp4")
or

winopen('xylophone.mpg")

File Size: 25 KB
Audio Length: 1.6 s

handel.mat An excerpt of the Hallelujah load handel.mat
chorus from Handel's Messiah. |sound(y,Fs)
File Size: 137 KB
Audio Length: 8.9 s

chirp.mat Birds chirping. load chirp.mat

sound(y,Fs)

1-16

MATLAB Example Data Sets

Filename

Description

How to Load

gong.mat

A gong ringing.
File Size: 90 KB

Audio Length: 5.1 s

load gong.mat
sound(y,Fs)

laughter.mat

Hearty laughter.
File Size: 121 KB
Audio Length: 6.4 s

load laughter.mat
sound(y,Fs)

mtlb.mat A person saying "MATLAB". load mtlb.mat
sound(mtlb,Fs)
File Size: 32 KB
Audio Length: 0.5 s
splat.mat A comical splat sound. load splat.mat
sound(y,Fs)
File Size: 18 KB
Audio Length: 1.2 s
train.mat A train whistle. load train.mat
sound(y,Fs)
File Size: 30 KB
Audio Length: 1.6 s
See Also

load | save | imshow | sound | table

More About

. “Data Sets for Deep Learning” (Deep Learning Toolbox)

. “Sample Data Sets” (Statistics and Machine Learning Toolbox)
. “Data Sets and Examples” (Econometrics Toolbox)

1-17

1 Fie Opening, Loading, and Saving

Save and Load Parts of Variables in MAT-Files

In this section...

“Save and Load Using the matfile Function” on page 1-18
“Load Parts of Variables Dynamically” on page 1-19
“Avoid Inadvertently Loading Entire Variables” on page 1-20

“Partial Loading and Saving Requires Version 7.3 MAT-Files” on page 1-20

You can save and load parts of variables directly in MAT-files without loading them into memory using
the matfile function. The primary advantage of using the matfile function over the load or save
functions is that you can process parts of very large data sets that are otherwise too large to fit in
memory. When working with these large variables, read and write as much data into memory as
possible at a time. Otherwise, repeated file access can negatively impact the performance of your
code.

Save and Load Using the matfile Function

This example shows how to load, modify, and save part of a variable in an existing MAT-file using the
matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.

A rand(5);

B magic(10);

save example.mat A B -v7.3;
clear A B

Construct a MatFile object from the MAT-file, example.mat. The matfile function creates a
MatFile object that corresponds to the MAT-file and contains the properties of the MatFile object.
By default, matfile only permits loading from existing MAT-files.

exampleObject = matfile('example.mat');

To enable saving, call matfile with the Writable parameter.

exampleObject = matfile('example.mat', 'Writable',true);

Alternatively, construct the object and set Properties.Writable in separate steps.

exampleObject = matfile('example.mat');
exampleObject.Properties.Writable = true;

Load the first row of B from example.mat into variable firstRowB and modify the data. When you
index into objects associated with Version 7.3 MAT-files, MATLAB® loads only the part of the variable
that you specify.

firstRowB
firstRowB

exampleObject.B(1,:);
2 * firstRowB;

Update the values in the first row of variable B in example.mat using the values stored in
firstRowB.

1-18

Save and Load Parts of Variables in MAT-Files

exampleObject.B(1l,:) = firstRowB;

For very large files, the best practice is to read and write as much data into memory as possible at a
time. Otherwise, repeated file access negatively impacts the performance of your code. For example,
suppose that your file contains many rows and columns, and that loading a single row requires most
of the available memory. Rather than updating one element at a time, update each row.

[nrowsB,ncolsB] = size(exampleObject, 'B');
for row = l:nrowsB

exampleObject.B(row,:) = row * exampleObject.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable at a time.
exampleObject.B = 10 * exampleObject.B;

Alternatively, update a variable by calling the save function with the -append option. The -append
option requests that the save function replace only the specified variable, B, and leave other
variables in the file intact. This method always requires that you load and save the entire variable.

load('example.mat','B");

B(1,:) =2 * B(1,:);

save('example.mat','-append','B");

Add a variable to the file using the matlab.io.MatFile object.

exampleObject.C = magic(8);

You also can add the variable by calling the save function with the -append option.
C = magic(8);

save('example.mat', '-append','C');
clear C

Load Parts of Variables Dynamically

This example shows how to access parts of variables from a MAT-file dynamically. This is useful when
working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography.mat, that contains one or more arrays with unknown
names. Construct a MatFile object that corresponds to the file, topography.mat. Call who to get
the variable names in the file.

exampleObject = matfile('topography.mat');
varlist = who(exampleObject)

varlist = 4x1 cell
{'topo’ }
{'topolegend'}
{'topomapl' }
{'topomap2' }

varlist is a cell array containing the names of the four variables in topography.mat.

1-19

1 Fie Opening, Loading, and Saving

1-20

The third and fourth variables, topomap1l and topomap2, are both arrays containing colormap data.
Load the colormap data from the third column of each variable into a field of the structure array, S.
For each field, specify a field name that is the original variable name prefixed by colormap . Then,
access the data in each variable as properties of exampleObject. Because varName is a variable,
enclose it in parentheses.

for index = 3:4
varName = varlist{index};

S(1).(['colormap ',varName]) = exampleObject.(varName)(:,3);
end

View the contents of the structure array, S.
S
S = struct with fields:

colormap_ topomapl: [64x1 doublel
colormap_ topomap2: [128x1 double]

S has two fields, colormap topomapl and colormap topomap2, each containing a column vector.

Avoid Inadvertently Loading Entire Variables

When you do not know the size of a large variable in a MAT-file and want to load only parts of that
variable at a time, avoid using the end keyword. Using the end keyword temporarily loads the entire
contents of the variable in question into memory. For very large variables, loading takes a long time
or generates Out of Memory errors. Instead, call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:
lastColB = exampleObject.B(:,end);
Use this code instead to improve performance:

[nrows,ncols] = size(exampleObject, 'B');
lastColB = exampleObject.B(:,ncols);

Similarly, any time you refer to a variable with syntax of the form matObj .varName, such as
exampleObject.B, MATLAB temporarily loads the entire variable into memory. Therefore, make
sure to call the size method for MatFile objects with syntax such as:

[nrows,ncols] = size(exampleObject, 'B');
rather than passing the entire contents of exampleObject.B to the size function,
[nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files

Any load or save operation that uses a MatFile object associated with a Version 7 or earlier MAT-file
temporarily loads the entire variable into memory.

Use the matfile function to create files in Version 7.3 format. For example, this code

Save and Load Parts of Variables in MAT-Files

newfile = matfile('newfile.mat');
creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert existing MAT-files to
Version 7.3 by calling the save function with the -v7.3 option, such as:

load('durer.mat');
save('mycopy durer.mat','-v7.3");

To change your preferences to save new files in Version 7.3 format, access the Environment section

on the Home tab, and click & Preferences. Select MATLAB > General > MAT-Files. This
preference is not available in MATLAB Online™.

See Also
matfile | save | load

More About
. “Save and Load Workspace Variables”
. “Growing Arrays Using matfile Function” on page 1-25

. “MAT-File Versions” on page 1-22

1-21

1 Fie Opening, Loading, and Saving

MAT-File Versions

1-22

In this section...

“Overview of MAT-File Versions” on page 1-22
“Save to Nondefault MAT-File Version” on page 1-23
“Data Compression” on page 1-23

“Accelerate Save and Load Operations for Version 7.3 MAT-Files” on page 1-24

Overview of MAT-File Versions

MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-file Version 4,
there are several subsequent versions of MAT-files that support an increasing set of features.
MATLAB releases R2006b and later all support all MAT-file versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is when you
create new MAT-files using the matfile function. In this case, the default MAT-file version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences.

* Select MATLAB > General > MAT-Files.

On the Home tab, in the Environment section, click {& Preferences.

The preferences apply to both the save function and the Save menu options.

The maximum size of a MAT-file is imposed only by your native file system.

This table lists and compares all MAT-file versions.

use different default
character encoding
schemes, and all
Version 6 features.

MAT-File (Supporte [Supported Features [Compressi [Maximum |Value of Preference
Version |d MATLAB on Size of version Option
Releases Each argument
Variable in save
function
Version 7.3 |[R2006b Saving and loading Yes =2 GBon '-v7.3' MATLAB
(Version parts of variables, and |(default) 64-bit Version 7.3
7.3) or all Version 7 features computers or later
later (save -v7.3)
Version 7 |R14 Unicode® character |Yes 2731 bytes |'-v7' MATLAB
(Version encoding, which (default) per variable Version 7 or
7.0) or enables file sharing later
later between systems that (save -v7)

MAT-File Versions

MAT-File |(Supporte [Supported Features [Compressi [Maximum |Value of Preference
Version |d MATLAB on Size of version Option
Releases Each argument
Variable in save
function
Version 6 |R8 N-dimensional arrays, |No 2731 bytes |'-v6' MATLAB
(Version 5) |cell arrays, structure per variable Version 5 or
or later arrays, variable later
names longer than 19 (save -v6)
characters, and all
Version 4 features.
Version 4 |All Two-dimensional No 100,000,000 |'-v4' n/a
double, character, elements per
and sparse arrays array, and
2731 bytes
per variable

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead storage to
describe the contents of the file. For cell arrays, structure arrays, or other containers that can store
heterogeneous data types, Version 7.3 MAT-files are sometimes larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version

Save to a MAT-file version other than the default version when you want to:

* Allow access to the file using earlier versions of MATLAB.

» Take advantage of Version 7.3 MAT-file features.
* Reduce the time required to load and save some files by storing uncompressed data.

* Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the last input to the
save function. For example, to create a Version 6 MAT-file named myfile.mat, type:

save('myfile.mat','-v6")

Data Compression

Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save storage space.
Data compression and decompression slow down all save operations and some load operations. In
most cases, the reduction in file size is worth the additional time spent.

In some cases, loading compressed data actually can be faster than loading uncompressed data. For
example, consider a block of data in a numeric array saved to both a 10 MB compressed file and a
100 MB uncompressed file. Loading the first 10 MB takes the same amount of time for each file.
Loading the remaining 90 MB from the uncompressed file takes nine times as long as loading the first
10 MB. Completing the load of the compressed file requires only the relatively short time to
decompress the data.

The benefits of data compression are negligible in the following cases:

1-23

1 Fie Opening, Loading, and Saving

1-24

* The amount of data in each item is small relative to the complexity of its container. For example,
simple numeric arrays take less time to compress and uncompress than cell or structure arrays of
the same size. Compressing arrays that result in an uncompressed file size of less than 3 MB
offers limited benefit, unless you are transferring data over a network.

* The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MAT-Files

Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks. The time
required to load part of a variable from a Version 7.3 MAT-file depends on how that data is stored
across one or more chunks. Each chunk that contains any portion of the data you want to load must
be fully uncompressed to access the data. Rechunking your data can improve the performance of the
load operation. To rechunk data, use the HDF5 command-line tools, which are part of the HDF5
distribution.

See Also
save |matfile

More About

. “Save and Load Workspace Variables”

Growing Arrays Using matfile Function

Growing Arrays Using matfile Function

When writing a large number of large values to a MAT-file, the size of the file increases in a
nonincremental way. This method of increase is expected. To minimize the number of times the file
must grow and ensure optimal performance though, assign initial values to the array prior to
populating it with data.

For example, suppose that you have a writable MatFile object.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million values, fifty thousand at a
time. The values should have a mean of 123.4, and a standard deviation of 56.7.

size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to populating it with data.
matObj.data(l,size) = 0;

View the size of the file.

* On Windows systems, use dir.

system('dir matFileOfDoubles.mat');
¢ On UNIX® systems, use 1s -1s:

system('ls -1s matFileOfDoubles.mat');

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value to the last
element of the array does not create a large file. It does, however, prepare your system for the
potentially large size increase of matFileOfDoubles.mat.

Write data to the array, one chunk at a time.

nout = 0;

while(nout < size)
fprintf('Writing %d of %d\n',nout,size);
chunkSize = min(chunk,size-nout);
data = mean + std * randn(1,chunkSize);
matObj.data(l, (nout+l): (nout+chunkSize)) = data;
nout = nout + chunkSize;

end

View the size of the file.
system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also
matfile

1-25

1 Fie Opening, Loading, and Saving

More About
. “Save and Load Parts of Variables in MAT-Files” on page 1-18

1-26

Unexpected Results When Loading Variables Within a Function

Unexpected Results When Loading Variables Within a Function

If you have a function that loads data from a MAT-file and find that MATLAB does not return the
expected results, check whether any variables in the MAT-file share the same name as a MATLAB
function. Common variable names that conflict with function names include i, j, mode, char, size,
and path.

These unexpected results occur because when you execute a function, MATLAB preprocesses all the
code in the function before running it. However, calls to Load are not preprocessed, meaning
MATLAB has no knowledge of the variables in your MAT-file. Variables that share the same name as
MATLAB functions are, therefore, preprocessed as MATLAB functions, causing the unexpected
results. This is different from scripts, which MATLAB preprocesses and executes line by line, similar
to the Command Window.

For example, consider a MAT-file with variables height, width, and length. If you load these
variables in a function such as findVolume, MATLAB interprets the reference to length as a call to
the MATLAB length function, and returns an error.

function vol = findVolume(myfile)

load(myfile);
vol = height * width * length;
end

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of these approaches:
* Load the variables into a structure array. For example:

function vol = findVolume(myfile)

dims = load(myfile);

vol = dims.height * dims.width * dims.length;
end

+ Explicitly include the names of variables in the call to the load function. For example:
function vol = findVolume(myfile)
load(myfile, 'height', 'width', 'length')

vol = height * width * length;
end

» [Initialize the variables within the function before calling Load. To initialize a variable, assign it to
an empty matrix or an empty character vector. For example:

function vol = findVolume(myfile)

height = [];
width = [];

length = [];
load(myfile);

vol = height * width * length;

To determine whether a particular variable name is associated with a MATLAB function, use the
exist function. A return value of 5 determines that the name is a built-in MATLAB function.

See Also
load

1-27

1 Fie Opening, Loading, and Saving

More About

. “Save and Load Workspace Variables”

1-28

Create Temporary Files

Create Temporary Files

Use the tempdir function to return the name of the folder designated to hold temporary files on your
system. For example, issuing tempdir on The Open Group UNIX systems returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned file name is a
suitable destination for temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fileID = fopen(tempname, 'w');

In most cases, tempname generates a universally unique identifier (UUID). However, if you run
MATLAB without JVM™, then tempname generates a random name using the CPU counter and time,
and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems, designating
a file as temporary means only that the file is not backed up.

1-29

Text Files

* “Import Text Files” on page 2-2

* “Read Text File Data Using Import Tool” on page 2-6

* “Import Dates and Times from Text Files” on page 2-10

* “Import Numeric Data from Text Files into Matrix” on page 2-14

* “Import Mixed Data from Text File into Table” on page 2-16

* “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-19
* “Write Data to Text Files” on page 2-22

* “Write to a Diary File” on page 2-26

+ “Read Collection or Sequence of Text Files” on page 2-27

* “Import Block of Numeric Data from Text File” on page 2-30

2 Text Files

Import Text Files

2-2

MATLAB can read and write numeric and nonnumeric data from delimited and formatted text files,
including .csv and . txt files. Text files often contain a mix of numeric and text data as well as
variable and row names. You can represent this data in MATLAB as tables, timetables, matrices, cell
arrays, or string arrays.

Import data from text files either programmatically or interactively. Import programmatically to use
tailored import functions and further control how your data is imported using import options. Import
interactively to use the Import Tool and its user interface.

Import Data as Tables

If your text file has tabular data, you can import the data as a table. A table consists of column-
oriented variables containing rows of data of the same type. Each variable in a table can hold a
different data type and size, however, each variable must have the same number of rows. For more
information about tables, see “Create Tables and Assign Data to Them”.

Import tabular data from a text file into a table using the readtable function with the file name. For
example, create a table from the sample file airlinesmall.csv.

T = readtable('airlinesmall.csv');

Display the first five rows and columns of the table.

T(1:5,1:5)

ans =
5x5 table

Year Month DayofMonth DayOfWeek DepTime

1987 10 21 3 {'642"' }
1987 10 26 1 {'1021"'}
1987 10 23 5 {'2055"}
1987 10 23 5 {'1332"'}
1987 10 22 4 {'629" }

Import Data as Timetables

If your text file has tabular data where each row is associated with a time, you can import the data as
a timetable. Like tables, timetables allow you to store tabular data variables that can have different
data types and sizes as long as they have the same number of rows. In addition, a timetable provides
time-specific functions to align, combine, and perform calculations with time-stamped data in one or
more timetables. For more information about timetables, see “Create Timetables”.

Import tabular data from a text file into a timetable using the readtimetable function. For example,
create a timetable from the sample file outages.csv.

TT = readtimetable('outages.csv');

Display the first five rows and columns of the timetable.

Import Text Files

TT(1:5,1:5)

ans =
5x5 timetable

OutageTime Region Loss Customers RestorationTime

Caust

2002-02-01 12:18 {'SouthWest'} 458.98 1.8202e+06 2002-02-07 16:50

2003-01-23 00:49 {'SouthEast'} 530.14 2.1204e+05 NaT
2003-02-07 21:15 {'SouthEast'} 289.4 1.4294e+05 2003-02-17 08:14
2004-04-06 05:44 {'West' } 434.81 3.4037e+05 2004-04-06 06:10

2002-03-16 06:18 {'Midwest' } 186.44 2.1275e+05 2002-03-18 23:23

Import Data as Matrices

If your text file contains uniform data (all of the same type), you can import the data as a matrix.
Importing your data into a matrix allows you to work with a minimally formatted array.

Import tabular data from a text file into a matrix using readmatrix. For example, import the data
from the sample file basic matrix.txt into a matrix.

M = readmatrix('basic matrix.txt")

M = 5x4
6 8 3 1
5 4 7 3
1 6 7 10
4 2 8 2
2 7 5 9

Import Data as Cell Arrays

A cell array is a data type with indexed data containers called cells, where each cell can contain any
type of data. Cell arrays commonly contain either lists of text, combinations of text and numbers, or
numeric arrays of different sizes.

You can import non-uniform data (each column having a different type) from a text file into a cell
array using readcell. For example, display the contents of basic cell. txt, and then import the
mixed data into a cell array.

type basic cell.txt

1,2,3
hello,world,NaN
10-0ct-2018 10:27:56,1,

C = readcell('basic cell.txt")

C=3x3 cell array

{I 11} {I 21} {I 31}
{'hello"’ } {'world'} {I NaN]}
{[10-0ct-2018 10:27:56]1} {[11} {1x1 missing}

Alternatively, you can import formatted data from a text file into a cell array using the textscan
function and a low-level I/O workflow. Low-level I/O workflows allow for the most control over

{'winter st
{'winter st
{'winter st
{'equipment
{'severe st

2-3

2 Text Files

2-4

importing data. This degree of control is not necessary for most workflows. For more information on
importing text data with low-level I/O, see “Import Text Data Files with Low-Level I/0” on page 4-2.

Import Data as String Arrays

If your text file contains lines of plain text, you can represent the plain text in MATLAB as a string
array. String arrays store pieces of text and provide a set of functions for working with text as data.
For example, you can index into, reshape, and concatenate strings arrays just as you can with arrays
of any other type.

Import lines of plain text in a text file into string arrays using readlines. For example, create a
string array from the sample text file, badpoem. txt. Since the text file has four lines of plain text,
the function creates a 4-by-1 string array.

lines = readlines("badpoem.txt")

lines = 4x1 string
"Oranges and lemons,"
"Pineapples and tea."
"Orangutans and monkeys,"
"Dragonflys or fleas."

Import Data with Import Options for Additional Control

Importing tabular data sometimes requires additional control over the import process. To customize
the import process, you can create an import options object. The object has properties that you can
adjust based on your import needs. For example, you can change the data types of variables or import
only a subset of variables. For more information about import options, see detectImportOptions.

Import Data Interactively

If you would prefer to use the user interface, you can import data interactively into a table or other
data type using the Import Tool.

To open the Import Tool, within the Home tab, in the Variable section, click Import Data I&I
Alternatively, right-click the name of the file in the Current Folder browser and select Import
Data.Then, select the file you want to import. Using the Import Tool window, set the importing
options and then click Import Selection to import the data into MATLAB. For more information, see
“Read Text File Data Using Import Tool” on page 2-6.

Import Text Files

IMPORT
—— Column delimiters: - W Output Type:
|5Fﬂ'3'5 - e = |Et|';| Column vectors
© Fixed Width) Delimiter Options Wariable Names Row: 1 <1 | 723 et Opiins ~.
DELIMITERS SELECTION IMPORTED DAT,
| grades.bd |
A B C D
John Ann Mark Rob
Mumber *MNumber ~MNumber - MNumber -
1 John Ann Mark Rob
2 Eg.4 91.5 B9.2 7.3
3 83.2 g&8.0 67.8 9l1.0
4 77.8 76.3 92.5
5 946.4 g4.6

See Also

Import Tool | readtable | table | readtimetable | readmatrix | readcell | readlines |

textscan | detectImportOptions

More About

. “Create Tables and Assign Data to Them”

. “Access Data in Tables”

. “Import Mixed Data from Text File into Table” on page 2-16
. “Create Timetables”

. “Read Text File Data Using Import Tool” on page 2-6

2-5

2 Text Files

Read Text File Data Using Import Tool

In this section...

“Select Data Interactively” on page 2-6

“Import Data from Multiple Text Files” on page 2-8

Import data from a text file by selecting data interactively. You also can repeat this import operation
on multiple text files by using the generate code feature of the import tool.

Select Data Interactively

This example shows how to import data from a text file with column headers and numeric data using
the Import Tool. The file in the example, grades . txt, contains this data:

John Ann Mark Rob
88.4 91.5 89.2 77.3
83.2 88.0 67.8 91.0
77.8 76.3 92.5
92.1 96.4 81.2 84.6

To create the file, copy and paste the data using any text editor.

On the Home tab, in the Variable section, click Import Data I&I Alternatively, right-click the
name of the file in the Current Folder browser and select Import Data. The Import Tool opens.

IMPORT

Column delimiters: Output Type:
“ Delimited Range: D5 A PR

o
Space - Uy column vectors

ixed Wi Variable Names Row: :
O Fixed Witth (&5 pefimiter Options. v e * @ TextOptions ~

DELIMITERS SELECTION IMPORTED DAT,
| grades.bd [
A B C D
John Ann Mark Rob

Murnber «MNumber wMumber = Number -

1 John Ann Mark Rob
2 BE.4 915 9.2 77.3
3 3.2 g8.0 67.8 91.0
4 T7.8 76.3 92.5
5 96.4 4.8

The Import Tool recognizes that grades . txt is a fixed width file. In the Imported Data section,
select how you want the data to be imported. The following table indicates how data is imported
depending on the option you select.

2-6

Read Text File Data Using Import Tool

Option Selected How Data is Imported

Table Import selected data as a table.

Column vectors Import each column of the selected data as an
individual m-by-1 vector.

Numeric Matrix Import selected data as an m-by-n numeric array.

String Array Import selected data as a string array that
contains text.

Cell Array Import selected data as a cell array that can
contain multiple data types, such as numeric data
and text.

Under Delimiter Options, you can specify whether the Import Tool should use a period or a comma
as the decimal separator for numeric values.

IMPORT

= . Column delimiters:
Delimited Range:
|Epa|:E -

i Wariable Names Row: 1
O Fixed Width 5, b cjimiter Options N
B COMBINE REPEATED DELIMITERS [CTION

des.bt
_Igri B Treat Multiple Delimiters as One

A
DECIMAL SEPARATOR
John #

Number ~ Numl O . (period)

TEEEREN RN & (comma)

Double-click a variable name to rename it.

A B C D
John 1 Mark Rob
M... vhIUh.l!E!\EFJb'hIUME'rER *MNUMEER ~
L||||.||||||||.||||||||.|||||||

1 (John Ann Mark Rob

2lee.4 91.5 g9.2 77.3

383.2 g8.0 67.8 91.0

4 |77.8 T6.3 92.5

5182.1 96.4 gl.2 g4.46

You also can use the Variable Names Row box in the Selection section to select the row in the text
file that you want the Import Tool to use for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain data that
cannot be imported in the format specified for that column. In this example, the cell at row 3, column
C, is considered unimportable because a blank cell is not numeric. Highlight colors correspond to

2-7

2 Text Files

2-8

proposed rules to make the data fit into a numeric array. You can add, remove, reorder, or edit rules,
such as changing the replacement value from NaN to another value.

L1 Replace ¥ unimpertable cells with = MNalM -+

4

UMIMFORTABLE CELLS

All rules apply to the imported data only and do not change the data in the file. Any time you are
importing into a matrix or into numeric column vectors and the range includes non-numeric data,
then you must specify the rules.

To see how your data is imported, place the cursor over individual cells.

A B C D

John Ann Mark Rob

M... *MUMEER *NUMEER *MNUMEER ™

LIIILIIIIIIILIIIIIIILIIIIIII
1 | John Ann Mark Rob
2|ge.4 91.5 gs.2 77.3
3 es.2 88.0 [Replaced I;:lj,r:NaNl
4 |77.8 76.3HalH 92.5
5lb2.1 96.4 e2[es.6

When you click the Import Selection button Qy the Import Tool creates variables in your
workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files

To perform the same import operation on multiple files, use the code generation feature of the Import
Tool. If you import a file one time and generate code from the Import Tool, you can use this code to
make it easier to repeat the operation. The Import Tool generates a program script that you can edit
and run to import the files, or a function that you can call for each file.

Suppose you have a set of text files in the current folder. The files are named myfile@1. txt through
myfile25. txt, and you want to import the data from each file, starting from the second row.
Generate code to import the entire set of files as follows:

Open one of the files in the Import Tool.

Click Import Selection =, and then select Generate Function. The Import Tool generates code
similar to the following excerpt, and opens the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.

https://www.mathworks.com/videos/import-tool-enhancements-for-text-files-101466.html

Read Text File Data Using Import Tool

3 Save the function.

In a separate program file or at the command line, create a for loop to import data from each
text file into a cell array named myData:

numFiles
startRow

25;
2;
endRow = inf;
myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%02d.txt', fileNum);
myData{fileNum} = importfile(fileName,startRow,endRow);
end

Each cell in myData contains an array of data from the corresponding text file. For example,
myData{1l} contains the data from the first file, myfile0O1. txt.

See Also
readtable | textscan | readmatrix | readcell | readvars | readtimetable

More About
. “Import Text Files” on page 2-2

2-9

2 Text Files

Import Dates and Times from Text Files

2-10

Import formatted dates and times (such as '01/01/01"' or '12:30:45"') from column oriented
tabular data in three ways.

* Import Tool — Interactively select and import dates and times.

* readtable function — Automatically detect variables with dates and times and import them into
a table.

* Import Options — Use readtable with detectImportOptions function for more control over
importing date and time variables. For example, you can specify properties such as FillValue
and DatetimeFormat.

This example shows you how to import dates and times from text files using each of these methods.

Import Tool

Open the file outages. csv using the Import Tool. Specify the formats of dates and times using the
drop-down menu for each column. You can select from a predefined date format, or enter a custom

format. To import the OutageTime column, specify the custom format yyyy-MM-dd HH:mm. Then,

click the Import Selection button to import the data into the workspace.

Import Dates and Times from Text Files

IMPORT

o Column delimiters: Qutput Type:
O Delimited | Range: |B1:B14659 - |—

“ariable Names Row: 1

Table =4

" Foxed Width &, pelimiter Options = T) Text Options

CELIMITERS SELECTION IMPORTED DATA
| outages.csy |
A B C D E
outages
Region OutageTime Loss Customers RestorationTim
Categorical +|Datetime * Number * Number w Text
1 |Region 2 P —
g—m Click here to change the data type for this column.
2 |SouthWest 2000207 1530
Text 1\
3 couthEast Text like 1.234 will convert to string ™1.234™
o NN2-N32-17 ﬁl;_l Fi
4 SouthEast | ENEBEERR 2003-02-17 08:14 A
50 West Num 2004-04-06 06:10 \
: ; umaoer
6 |MidWest 2002-03-18 23:23
- Text like "1.2234™ will convert to number 1.224 - -
7| West . i i 2003-06-18 10:54
- Categories (categorical) - -
8 |West 2004-06-20 1916
9 West Categorical 2002-06-07 00:5
Text like "orange’ will convert to categorical orange R
10 MorthEast = = - 2003-07-17 01:12
rosmmeemmem—| Dates and Times (datetime) —
11 | MidWest 2004-09-27 16:37
12 |SouthEast | Y¥yy-MM-dd HH:mm 2004-09-05 20:46
13 West [Custom Date Format like MM-dd-yyyy hh:mm:ss.555 2004-05-22 04:23
14 Southfast | [MOre date formats ... 2002-09-01 19:12
15 | SouthEast 2003-09-27 07:32 3551706825 (2003-10-04 0702
16 West 2003-11-12 06:12 2540860816 (924291.6474 |2003-11-17 02:04

-(09-18 05:54 0
\ 07,3

readtable Function

Use the readtable function and display 10 rows of the OutageTime variable. readtable
automatically detects the date time variables and formats.

filename = 'outages.csv';
T = readtable(filename);
T.OutageTime(1:10)

ans = 10x1 datetime
2002-02-01 12:18
2003-01-23 00:49
2003-02-07 21:15
2004-04-06 05:44
2002-03-16 06:18
2003-06-18 02:49

2-11

2 Text Files

2004-06-20 14:39
2002-06-06 19:28
2003-07-16 16:23
2004-09-27 11:09

Import Options

Use an import options object for more control over importing date and time variables. For example,
change the date-time display format or specify a fill value for missing dates.

Create an import options object for the outages. csv file and display the variable import options for
the variable RestorationTime. The detectImportOptions function automatically detects the
data types of the variables.

opts = detectImportOptions(filename);
getvaropts(opts, 'RestorationTime")

ans =
DatetimeVariableImportOptions with properties:

Variable Properties:
Name: 'RestorationTime'
Type: 'datetime'’
FillValue: NaT
TreatAsMissing: {}
QuoteRule: 'remove'
Prefixes: {}
Suffixes: {}
EmptyFieldRule: 'missing'’

Datetime Options:
DatetimeFormat: 'default'’
DatetimelLocale: 'en_ US'

InputFormat: ''
TimeZone: ''

Import the data and display the first 10 rows of the variable RestorationTime. The second row
contains a NaT, indicating a missing date and time value.

= readtable(filename,opts);
.RestorationTime(1:10)

— -

ans = 10x1 datetime
2002-02-07 16:50
NaT
2003-02-17 08:14
2004-04-06 06:10
2002-03-18 23:23
2003-06-18 10:54
2004-06-20 19:16
2002-06-07 00:51
2003-07-17 01:12
2004-09-27 16:37

2-12

Import Dates and Times from Text Files

To use a different date-time display format, update the DatetimeFormat property, and then replace
missing values with the current date and time by using the FillValue property. Display the updated

variable options.

opts = setvaropts(opts, 'RestorationTime’,

'DatetimeFormat', '"MMMM d, yyyy HH:mm:ss Z',...
'"FillValue', 'now');

getvaropts(opts, 'RestorationTime")

ans =

DatetimeVariableImportOptions with properties:

Variable Properties:
Name:

Type:

FillValue:
TreatAsMissing:
QuoteRule:
Prefixes:
Suffixes:
EmptyFieldRule:

Datetime Options:

DatetimeFormat:
DatetimelLocale:
InputFormat:
TimeZone:

'RestorationTime’
'datetime’

March 3, 2023 16:17:42 *
{}

'remove'

{}

{}

'missing'’

'MMMM d, yyyy HH:mm:ss Z'
'en_US'

Read the data with the updated import options and display the first 10 rows of the variable.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime

2002-02-07
2023-03-03
2003-02-17
2004-04-06
2002-03-18
2003-06-18
2004-06-20
2002-06-07
2003-07-17
2004-09-27

16:
16:
08:
06:
23:
10:
19:
00:
01:
16:

50
17
14
10
23
54
16
51
12
37

For more information on the datetime variable options, see the setvaropts reference page.

See Also

Import Tool | readtable | detectImportOptions | setvaropts | readmatrix | readcell |
readvars | readtimetable

More About
. “Import Mixed Data from Text File into Table” on page 2-16

2-13

2 Text Files

Import Numeric Data from Text Files into Matrix

2-14

Import numeric data as MATLAB arrays from files stored as comma-separated or delimited text files.

Import Comma-Separated Data

This example shows how to import comma-separated numeric data from a text file. Create a sample
file, read all the data in the file, and then read only a subset starting from a specified location.

Create a sample file named ph.dat that contains comma-separated data and display the contents of
the file.

rng('default")

A = 0.9*%randi(99,[3 4]);

writematrix (A, 'ph.dat', 'Delimiter',"',")
type('ph.dat"')

72.9,81.9,25.2,86.4

81,56.7,49.5,14.4
11.7,9,85.5,87.3

Read the file using the readmat rix function. The function returns a 3-by-4 double array containing
the data from the file.

M

readmatrix('ph.dat')

M 3x4

72.9000 81.9000 25.2000 86.4000
81.0000 56.7000 49,5000 14.4000
11.7000 9.0000 85.5000 87.3000

Import only the rectangular portion of data starting from the first row and third column in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and Datalines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('ph.dat');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DataLines = [1 3];
readmatrix('ph.dat',opts)

ans = 3x2
25.2000 86.4000

49.5000 14.4000
85.5000 87.3000

Import Delimited Numeric Data

Import Numeric Data from Text Files into Matrix

This example shows how to import numeric data delimited by any single character using the
writematrix function. Create a sample file, read the entire file, and then read a subset of the file
starting at the specified location.

Create a tab-delimited file named num. txt that contains a 4-by-4 numeric array and display the
contents of the file.

rng('default")

A = randi(99, [4,4]);

writematrix (A, 'num.txt', 'Delimiter', '\t"')
type('num.txt"')

81 63 95 95
90 10 96 49
13 28 16 80
91 55 97 15

Read the entire file. The readmatrix function determines the delimiter automatically and returns a
4-by-4 double array.

M = readmatrix('num.txt")
M = 4x4

81 63 95 95
90 10 96 49
13 28 16 80
91 55 97 15

Read only the rectangular block of data beginning from the second row, third column, in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and Datalines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('num.txt"');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DatalLines = [2 4];
readmatrix('num.txt',opts)
ans = 3x2

96 49

16 80
97 15

See Also
readmatrix | readcell | readvars | readtimetable

More About
. “Import Text Files” on page 2-2

2-15

2 Text Files

Import Mixed Data from Text File into Table

This example shows how to use the readtable function to import mixed text and numeric data into a
table, specify the data types for the variables, and then append a new variable to the table.

Sample File Overview

The sample file, outages. csv, contains data representing electric utility outages in the US. The first
few lines of the file are:

Region,QutageTime, Loss,Customers,RestorationTime, Cause
SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58,winter storm
SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm
SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter storm
West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault
Read Text File

Import the data using readtable and display the first five rows. The readtable function
automatically detects the delimiter and the variable types.

T = readtable('outages.csv');
head(T,5)

Region OutageTime Loss Customers RestorationTime Caust

{'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 {'winter st
{'SouthEast'} 2003-01-23 00:49 530.14 2.1204e+05 NaT {'winter st
{'SouthEast'} 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 {'winter st
{'West"' } 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 {'equipment
{'Midwest' } 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 {'severe st

Specify Variable Data Types Before Import

Updating the variable data types to the appropriate MATLAB® data types can benefit your data,
based on the type of variables in your file. For example, the first and sixth columns in outages.csv
are categorical. By designating these two columns as categorical arrays you can leverage MATLAB
functions for processing categorical data.

Designate and specify the data types of the variables in one of these ways:

* Specify the Format name-value pair in readtable

* Set the VariableTypes property of the import options for the file

Use the Format name-value pair to specify the variable data types, read the data, and display the
first five rows. In the %{yyyy-MM-dd HH:mm}D part of the formatSpec specifier, the text between

the curly braces describes the format of the date and time data. The values specified in Format
designate the:

2-16

Import Mixed Data from Text File into Table

» First and last columns in the file as categorical data

¢ Second and fifth columns as formatted date and time data

* Third and fourth columns as floating-point values

formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%

T = readtable('outages.csv', 'Format', formatSpec);

%{yyyy-MM-dd HH:mm}DS%C';

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Alternatively, specify the data types for the variables by using the setvartype function of the import
options. First, create an import options object for the file. The data file contains different types of
variables. Designate the first and last variables as categorical arrays, the second and fifth
variables as datetime arrays, and the remaining variables as double.

opts = detectImportOptions('outages.csv');

varNames = opts.VariableNames ;

varTypes = {'categorical', 'datetime', 'double’, ...
'double', 'datetime’, 'categorical'};

opts = setvartype(opts,varNames,varTypes);

Import the data using readtable with opts, and then display the first five rows.

T = readtable('outages.csv',opts);

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
West 2004-04-06 05:44 434 .81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Append New Variable to Table

Table T contains OutageTime and RestorationTime. Calculate the duration of each electrical
outage and append this data to the table.

T.Duration = T.RestorationTime - T.OutageTime;

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm

2-17

2 Text Files

West 2004-04-06 05:44 434 .81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

See Also

readtimetable | readtable | detectImportOptions | setvaropts | setvartype | preview |

head

More About

. “Create Tables and Assign Data to Them”

. “Import Dates and Times from Text Files” on page 2-10

. “Access Data in Tables”

2-18

Import Block of Mixed Data from Text File into Table or Cell Array

Import Block of Mixed Data from Text File into Table or Cell
Array

This example reads a block of mixed text and numeric data from a text file, and then imports the
block of data into a table or a cell array.

Data File Overview

The sample file bigfile.txt contains commented lines beginning with ##. The data is arranged in
five columns: The first column contains text indicating timestamps. The second, third, and fourth
columns contain numeric data indicating temperature, humidity and wind speed. The last column
contains descriptive text. Display the contents of the file bigfile. txt.

type('bigfile.txt")

A ID = 02476

YKZ Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
B ID = 02477

YVR Timestamp Temp Humidity Wind Weather

09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19. 94 7 n/a
09-Sep-2013 09:00:00 18. 94 4 fog
09-Sep-2013 13:00:00 20. 81 15 mainly clear
09-Sep-2013 17:00:00 20. 77 17 n/a
09-Sep-2013 18:00:00 20. 75 17 n/a
09-Sep-2013 21:00:00 16. 90 25 mainly clear
C ID = 02478

YYZ Timestamp Temp Humidity Wind Weather

OO KU =

Import Block of Data as Table
To import the data as a table, use readtable with import options.

Create an import options object for the file using the detectImportOptions function. Specify the
location of the data using the DatalLines property. For example, lines 3 through 8 contain the first
block of data. Optionally, you can specify the names of the variables using the VariableNames
property. Finally import the first block of data using readtable with the opts object.

opts = detectImportOptions('bigfile.txt');

opts.DatalLines = [3 8];

opts.VariableNames = {'Timestamp', 'Temp',...
"Humidity', 'Wind', 'Weather'};

T first = readtable('bigfile.txt',opts)

T first=6x5 table
Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 {'clear’ }

2-19

2 Text Files

06-Sep-2013 05:00:00 5.9 95 1 {'clear' }
06-Sep-2013 09:00:00 15.6 51 5 {'mainly clear' }
06-Sep-2013 13:00:00 19.6 37 10 {'mainly clear' }
06-Sep-2013 17:00:00 22.4 41 9 {'mostly cloudy'}
06-Sep-2013 21:00:00 17.3 67 7 {'mainly clear' }

Read the second block by updating the Datalines property to the location of the second block.

opts.DataLines = [11 17];
T second = readtable('bigfile.txt',opts)

T second=7x5 table

Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 {'clear' }
09-Sep-2013 05:00:00 19.1 94 7 {'n/a’ }
09-Sep-2013 09:00:00 18.5 94 4 {'fog' }
09-Sep-2013 13:00:00 20.1 81 15 {'mainly clear'}
09-Sep-2013 17:00:00 20.1 77 17 {'n/a’' }
09-Sep-2013 18:00:00 20 75 17 {'n/a’ }
09-Sep-2013 21:00:00 16.8 90 25 {'mainly clear'}

Import Block of Data as Cell Array

You can import the data as a cell array using the readcell function with detectImportOptions,
or by using the textscan function. First import the block of data using the readcell function and
then perform the same import by using textscan.

To perform the import using the readcell function, create an import options object for the file using
the detectImportOptions function. Specify the location of the data using the Datalines property.
Then, perform the import operation using the readcell function and import options object opts.

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8]; % fist block of data
C = readcell('bigfile.txt',opts)

C=6x5 cell array

{[06-Sep-2013 01:00:00]} {[6.6000]} {[89]} {[41} {'clear' }
{[06-Sep-2013 05:00:00]} {[5.9000]} {[95]} {[11} {'clear' }
{[06-Sep-2013 09:00:00]} {[15.6000]1} {[51]} {[5]} {'mainly clear' }
{[06-Sep-2013 13:00:00]} {[19.6000]1} {[37]} {[10]} {'mainly clear' }
{[06-Sep-2013 17:00:00]} {[22.4000]1} {[41]} {[91} {'mostly cloudy'}
{[06-Sep-2013 21:00:00]} {[17.3000]1} {[67]} {[71} {'mainly clear' }

To perform the import using the textscan function, specify the size of block using N and the format
of the data fields using formatSpec. For example, use '%s' for text variables, '%D' for date and
time variables, or '%c' for categorical variables. Set the 'DatelLocale' name-value argument to
"en_US' to ensure that the names of the months are interpreted in English. Use fopen to open the
file. The function then returns a file identifier, fileID. Next, read from the file by using the
textscan function.

N = 6;

formatSpec = '%D %f %T %T %c';
fileID = fopen('bigfile.txt");

2-20

Import Block of Mixed Data from Text File into Table or Cell Array

Read the first block and display the contents of the variable Humidity.
C first = textscan(filelID, formatSpec,N, 'CommentStyle', '##', 'Delimiter','\t', 'DateLocale’', 'en US'
C first=1Ix5 cell array
{6x1 datetime} {6x1 double} {6x1 double} {6x1 double} {6x1 char}
C first{3}
ans = 6x1
89
NaN
95
NaN

51
NaN

Update the block size N, and read the second block. Display the contents of the fifth variable
Weather.

N=7;
C second = textscan(fileID,formatSpec,N, 'CommentStyle"', '##', 'Delimiter','\t', 'DatelLocale’, 'en US

C second=1x5 cell array
{7x1 datetime} {7x1 double} {7x1 double} {7x1 double} {7x1 char}

C second{5}

7x1 char array

Close the file.

fclose(filelID);

See Also
readcell | readtable | textscan | fopen | detectImportOptions

More About

. “Access Data in Cell Array”

. “Moving within a File” on page 4-10

2-21

2 Text Files

Write Data to Text Files

In this section...

“Export Table to Text File” on page 2-22
“Export Cell Array to Text File” on page 2-23

“Export Numeric Array to Text File” on page 2-24

Export tabular data contained in tables, cell arrays, or numeric arrays from the MATLAB workspace
to text files.

Export Table to Text File

You can export tabular data from MATLAB® workspace into a text file using the writetable
function. Create a sample table, write the table to text file, and then write the table to text file with
additional options.

Create a sample table, T, containing the variables Pitch, Shape, Price and Stock.

Pitch = [0.7;0.8;1;1.25;1.5];

Shape = {'Pan';'Round'; 'Button';'Pan'; 'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];

Stock = [376;502;465;1091;562];

T = table(Pitch,Shape,Price,Stock)

T=5x4 table
Pitch Shape Price Stock
0.7 {'Pan' } 10 376
0.8 {'Round' } 13.59 502
1 {'Button'} 10.5 465
1.25 {'Pan' } 12 1091
1.5 {'Round' } 16.69 562

Export the table, T, to a text file named tabledata. txt. View the contents of the file. By default,
writetable writes comma-separated data, includes table variable names as column headings.

writetable(T, 'tabledata.txt');
type tabledata.txt

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502
1,Button,10.5,465
1.25,Pan,12,1091
1.5,Round, 16.69,562

Create a table T2 which includes row names using the RowNames name-value pair argument.

rowNames = {'M4';'M5"';'M6"';'M8"'; 'M10"'};
T2 = table(Pitch,Shape,Price,Stock, 'RowNames', rowNames)

2-22

Write Data to Text Files

T2=5x4 table

Pitch Shape Price Stock
M4 0.7 {'Pan' } 10 376
M5 0.8 {'Round' } 13.59 502
M6 1 {'Button'} 10.5 465
M8 1.25 {'Pan' } 12 1091
M10 1.5 {'Round"' } 16.69 562

Export T2 to a tab-delimited text file named tabledata2.txt. Use the Delimiter name-value pair
argument to specify a tab delimiter, and the WriteRowNames name-value pair argument to include
row names. View the contents of the file.

writetable(T2, 'tabledata2.txt', 'Delimiter', '\t', 'WriteRowNames', true);
type tabledata2.txt

Row Pitch Shape Price Stock
M4 0.7 Pan 10 376

M5 0.8 Round 13.59 502

M6 1 Button 10.5 465

M8 1.25 Pan 12 1091

M10 1.5 Round 16.69 562

Export Cell Array to Text File

You can export a cell array from MATLAB® workspace into a text file in one of these ways:

* Use the writecell function to export the cell array to a text file.
* Use fprintf to export the cell array by specifying the format of the output data.

Create a sample cell array C.

C = {'Atkins"',32,77.3,'M"; 'Cheng"',30,99.8,'F'; 'Lam',31,80.2,'M"'}
C = 3x4 cell array

{'Atkins'} {[321} {[77.3000]1} {'M"'}

{'Cheng"' } {[301} {[99.80001]1} {'F'}

{'Lam' } {[311} {[80.20001]1} {'M"'}

Export the cell array using writecell.
writecell(C, 'data.dat"')

View the contents of the file.

type data.dat

Atkins,32,77.3,M

Cheng,30,99.8,F

Lam,31,80.2,M

Alternatively, import the cell array using fprintf. Open a file that you can write to named
celldata.dat. Define formatSpec using the format specifiers to describe the pattern of the data in

2-23

2 Text Files

2-24

the file. Typical format specifiers include '%s' for a character vector, '%d' for an integer, or '%f"
for a floating-point number. Separate each format specifier with a space to indicate a space delimiter
for the output file. Include a newline character at the end of each row of data ('\n").

fileID = fopen('celldata.dat','w');

formatSpec =

‘9

55 %d %2.1T %s\n';

Determine the size of C and export one row of data at a time using the fprintf function. Then close
the file. fprintf writes a space-delimited file.

[nrows,ncols]

= size(C);

for row = l:nrows
fprintf(fileID, formatSpec,C{row,:});

end

fclose(filelID);

View the contents of the file.

type celldata.dat

Atkins 32 77.3 M
Cheng 30 99.8 F

Lam 31 80.2 M

Export Numeric Array to Text File

You can export a numerical array to a text file using writematrix.

Create a numeric array A.

A = magic(5)/10

A = 5x5
1.7000 2.4000
2.3000 0.5000
0.4000 0.6000
1.0000 1.2000
1.1000 1.8000

Write the numeric array to myData.dat and specify the delimiter to be

of the file.

writematrix (A, 'myData.dat', 'Delimiter',';")

type myData.dat

0.1000
0.7000
1.3000
1.9000
2.5000

0.8000
1.4000
2.0000
2.1000
0.2000

1.5000
1.6000
2.2000
0.3000
0.9000

; '. Then, view the contents

Write Data to Text Files

See Also
writematrix |writecell |writetimetable | fprintf | type|writetable

2-25

2 Text Files

Write to a Diary File

2-26

To keep an activity log of your MATLAB session, use the diary function. diary creates a verbatim
copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,

A=[11234,567381];

execute these commands at the MATLAB prompt to export this array using diary:

1

Turn on the diary function. Optionally, you can name the output file diary creates:

diary my data.out
Display the contents of the array you want to export. This example displays the array A. You could
also display a cell array or other MATLAB class:

A -
1 2 3 4
5 6 7 8
Turn off the diary function:

diary off

diary creates the file my data.out and records all the commands executed in the MATLAB
session until you turn it off:

A =
1 2 3 4
5 6 7

diary off
Open the diary file my data.out in a text editor and remove the extraneous text, if desired.

Read Collection or Sequence of Text Files

Read Collection or Sequence of Text Files

When your data is stored across multiple text files, you can use tabularTextDatastore to manage
and import the data. This example shows how to use tabularTextDatastore to read the data from
the collection of text files all together, or to read one file at a time.

Data

For this example, the folder C:\DataTxt contains a collection of text files. Capture this location in
the variable location. The data contains 10 text files, where each file contains 10 rows of data. The
results differ based on your files and data.

location = 'C:\DataTxt';
dir(location)

File0l.csv File@3.csv FileO5.csv File07.csv File09.csv
File02.csv FileO@4.csv FileO6.csv File08.csv FilelO.csv

Create Datastore

Create a datastore using the location of the files.
ds = tabularTextDatastore(location)

ds =
TabularTextDatastore with properties:

Files: {
"C:\DataTxt\FileOl.csv';
"C:\DataTxt\File02.csv';
"C:\DataTxt\File03.csv'

. and 7 more
}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
DatetimeLocale: en_US

Text Format Properties:
NumHeaderLines: 0
Delimiter: ','
RowDelimiter: '\r\n'
TreatAsMissing: ''
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%q', '%q', 'Ssf' ... and 7 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: "'
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}

2-27

2 Text Files

SelectedFormats: {'%q', '%q', '%f' ... and 7 more}
ReadSize: 20000 rows

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

ans = 1Ix2

100 10

Alternatively, import the data one file at a time using the read function. To control the amount of data

imported, before you call read, adjust the ReadSize property of the datastore. Set the ReadSize to

'file' or a positive integer.

* IfReadSizeis 'file', then each call to read reads all the data one file at a time.

* IfReadSize is a positive integer, then each call to read reads the number of rows specified by
ReadSize, or fewer, if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table

LastName Gender Age Location Height Weight Smoker
'Smith’ 'Male' 38 ‘County General Hospital' 71 176 "TRUE'
'Johnson’ 'Male' 43 'VA Hospital' 69 163 'FALSE'
'Williams' 'Female’ 38 'St. Mary's Medical Center' 64 131 "FALSE'
"Jones’ 'Female' 40 '"VA Hospital' 67 133 "FALSE'
'Brown' 'Female’ 49 ‘County General Hospital' 64 119 "FALSE'
'Davis’ 'Female' 46 'St. Mary's Medical Center' 68 142 "FALSE'
'Miller' 'Female’ 33 'VA Hospital' 64 142 '"TRUE"
‘Wilson' ‘Male' 40 'VA Hospital' 68 180 'FALSE'
'Moore' 'Male' 28 'St. Mary's Medical Center' 68 183 "FALSE'
'Taylor' 'Female' 31 "County General Hospital' 66 132 "FALSE'

secondFile = read(ds) % reads second file

secondFile=10x10 table

LastName Gender Age Location Height Weight Smoker
"Anderson’ 'Female’ 45 'County General Hospital' 68 128 'FALSE'
'Thomas' 'Female' 42 'St. Mary's Medical Center' 66 137 "FALSE'
'Jackson’ 'Male' 25 '"VA Hospital' 71 174 '"FALSE'
'White' 'Male' 39 '"VA Hospital' 72 202 '"TRUE'
'Harris' 'Female' 36 'St. Mary's Medical Center' 65 129 "FALSE'
'Martin' 'Male' 48 '"VA Hospital' 71 181 '"TRUE'
'Thompson' 'Male' 32 'St. Mary's Medical Center' 69 191 'TRUE"
'Garcia' 'Female’ 27 'VA Hospital' 69 131 '"TRUE'

2-28

Read Collection or Sequence of Text Files

'Martinez' 'Male' 37 "County General Hospital' 70 179 "FALSE'
'Robinson’ 'Male' 50 "County General Hospital' 68 172 "FALSE'
See Also

readtable | readmatrix | readcell | readvars | readtimetable | tabularTextDatastore

More About
. “Read and Analyze Large Tabular Text File” on page 13-99

2-29

2 Text Files

Import Block of Numeric Data from Text File

This example shows how to read numeric data organized in blocks in a text file. Each block within the
file can have a different format. You can read all the blocks as cell arrays, one block at a time, using
textscan.

File Format Overview

The information in the sample text file, test80211. txt, is the result from a wireless network
communication quality test. The sample file consists of four lines of introduction followed by several
blocks of data. Each block represents a different environment (for example, mobile, indoor, outdoor)
and has the following format:

* Two header lines of description
* The text, Num SNR=, followed by a numeric value, m

* Numeric data organized in a table of m columns and an arbitrary number of rows (The data is
comma-delimited.)

* The text, *EOB, denoting the end of the block
For example, a block of data is formatted like this:
* Indoor2

* SNR Vs test No

Num SNR=3

,-5.00E+00,-4.00E+00,
1.00E+00,3.32E-07,9.12E-07
2.00E+00,1.49E-07,2.44E-07
3.00E+00,6.04E-07,2.53E-07
4.00E+00,1.53E-07,4.25E-07
5.00E+00,1.82E-07,1.83E-07
6.00E+00,6.27E-07,8.21E-07
7.00E+00,9.10E-08,1.53E-08
8.00E+00,8.73E-07,6.45E-07
9.00E+00,4.40E-07,1.33E-07

*EOB

The numeric data represents error rates over a range of noise levels for a number of independent
tests. The first column indicates the test number. To view the entire sample file, type at the command
line:

open test80211.txt

2-30

Import Block of Numeric Data from Text File

Open Text File for Reading

Open the file and create a file identifier.
fileID = fopen('test80211.txt','r");
Read Introduction Lines

Read the four introductory lines, which contain text delimited by a newline character. textscan
returns a 1-by-1 cell array containing a 4-by-1 cell array of character vectors.

Intro = textscan(filelID, '%s',4, 'Delimiter','\n"')

Intro = 1x1 cell array
{4x1 cell}

View the contents of the first cell.

disp(Intro{1})
{'*CcX! }
{'*CCX WiFi conformance test'}
{'*CCX BER Results' }
{'*CcX! }

Read Each Block

For each block, we want to read a header, the numeric value m, column headers for the data, then the
data itself. First, initialize the block index.

Block = 1;

Read each block of data in a while loop. The loop executes until the end of the file is reached and
~feof returns false. The textscan function returns the data in each block as a cell array named
InputText. Convert each cell array to a numeric array using cell2mat and store the numeric array
in a cell array named Data. A cell array allows the storage of different size blocks.

while (~feof(filelID)) For each block:

o°

o°

fprintf('Block: %s\n', num2str(Block)) Print block number to the screen
InputText = textscan(filelD, '%s',2, 'delimiter','\n'); % Read 2 header lines
HeaderLines{Block,1} = InputText{l};
disp(HeaderLines{Block});

o°

Display header lines

Read the numeric value
following the text, Num SNR =
Specify that this is the
number of data columns

InputText = textscan(fileID, 'Num SNR = %f');

NumCols = InputText{l};

d° o° o° o°

FormatString = repmat('sf',1,NumCols); Create format string
based on the number
of columns

Read data block

d° o° o° o°

InputText = textscan(fileID,FormatString,
'delimiter',"',"');

Data{Block,1} = cell2mat(InputText);

[NumRows ,NumCols] = size(Data{Block}); Determine size of table

o°

2-31

2 Text Files

2-32

disp(cellstr(['Table data size: ' ...

num2str(NumRows) '
disp(' ");
eob = textscan(filelD,
Block = Block+1;
end
Block: 1
{'* Mobilel'
{'* SNR Vs test
{'Table data size: 30
Block: 2
{'* Mobile2'
{'* SNR Vs test
{'Table data size: 30
Block: 3
{'* Mobile3'
{'* SNR Vs test
{'Table data size: 31
Block: 4
{'* Mobile4'
{'* SNR Vs test
{'Table data size: 28
Block: 5
{'* Mobile5'
{'* SNR Vs test
{'Table data size: 32
Block: 6
{'* Mobile6'
{'* SNR Vs test
{'Table data size: 30
Block: 7

x ' num2str(NumCols)]));

'%s',1, 'delimiter','\n');

No'}
x 19'}

No'}
X 9'}

No'}
x 15'}

No'}
x 19'}

No'}
x 18'}

No'}
x 19'}

% New line

)
©

% Read and discard end-of-block marker
Increment block index

Import Block of Numeric Data from Text File

{1
{1

{'Table

Block: 8

{'*
{'*

{'Table

Block: 9

{1
{1

{'Table

Block: 10

{1
{1

{'Table

Block: 11

{'*
{'*

{'Table

Block: 12

{1
{1

{'Table

Block: 13

{1
{1

{'Table

Block: 14

Mobile7'
SNR Vs test

data size: 30

Mobile8'
SNR Vs test

data size: 20

Indoor0@'
SNR Vs test

}
No'}

x 11'}

}
No'}

x 18'}

}
No'}

data size: 9 x 3'}

Indoorl'
SNR Vs test

data size: 22

Indoor2'
SNR Vs test

data size: 25

Indoor3'
SNR Vs test

data size: 21

Outdoorl'
SNR Vs test

data size: 20

}
No'}

X 6'}

No'}
x 3'}

No'}
x 18'}

No'}
x 18'}

2-33

2 Text Files

{'* OQutdoor2' }
{'* SNR Vs test No'}

{'Table data size: 23 x 3'}

Block: 15
{'* Outdoor3' }
{'* SNR Vs test No'}

{'Table data size: 22 x 18'}

Block: 16
{'* Outdoor4' }
{'* SNR Vs test No'}

{'Table data size: 21 x 18'}

Block: 17
{'* Outdoor5' }
{'* SNR Vs test No'}

{'Table data size: 18 x 5'}

Close Text File
fclose(filelD);
Total Number of Blocks

Determine the number of blocks in the file.

NumBlocks Block-1

NumBlocks = 17

View Numeric Data

Display the numeric data in one of the blocks using short scientific notation.

First, store the current Command Window output display format.
user_format = get(0, 'format');

Change the display format to short scientific notation.

format shortE

Display the header lines for the ninth block and the numeric data.

Block = 9;
disp(HeaderLines{Block});

2-34

Import Block of Numeric Data from Text File

{'* Indoor0' }

{'* SNR Vs test No'}
fprintf('SNR %d %d\n',Data{Block,1}(1,2:end))
SNR -7 -6

disp(Data{Block,1}(2:end,2:end));

9.0600e-07 6.7100e-07
3.1700e-07 3.5400e-07
2.8600e-07 1.9600e-07
1.4800e-07 7.3400e-07
3.9500e-08 9.6600e-07
7.9600e-07 7.8300e-07
4.0000e-07 8.8100e-07
3.0100e-07 2.9700e-07

Restore the original Command Window output display format.

set(0, 'format', user format);

See Also
textscan

More About
. “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-19

2-35

Spreadsheets

* “Import Spreadsheets” on page 3-2

* “Read Spreadsheet Data Using Import Tool” on page 3-4

* “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
* “Read Spreadsheet Data into Table” on page 3-9

* “Read Collection or Sequence of Spreadsheet Files” on page 3-12

* “Write Data to Excel Spreadsheets” on page 3-15

* “Define Import Options for Tables” on page 3-18

3 Spreadsheets

Import Spreadsheets

Spreadsheets often contain a mix of numeric and text data as well as variable and row names, which
is best represented in MATLAB as a table. You can import data into a table using the Import Tool or

the readtable function.

Import Spreadsheet Data Using the Import Tool

The Import Tool allows you to import into a table or other data type. For example, read data from
the sample spreadsheet file patients.xls as a table in MATLAB. Open the file using the Import
Tool and select options such as the range of data and the output type. Then, click the Import

Selection button

IMPORT

4

to import the data into the MATLAB workspace.

e GESIIETOR) o

3-2

Import Spreadsheet Data Using readtable

Alternatively, you can read spreadsheet data into a table using the readtable function with the file

name, for example:

T = readtable('patients.xls');

You can also select the range of data to import by specifying the range parameter. For example, read
the first five rows and columns of the spreadsheet. Specify the range in Excel notation as 'Al:E5".

T = readtable('patients.xls', 'Range', 'Al:E5")

Range: W ?E?iu:;l:pe- - V
Variable Names Row: 1 : 1 Table WIHFORTABLE CELLS Impc_)rt
Y column vectors - N .
SELECTION FH Numeric Matrix IMPORT Y
| patientsxs | 1] String Array
A B [{1] Cell Array _ = . G
patients
LastName Gender Age Location Height Weight Smol
Text - Categorical ~MNumber - Categorical ~MNumber - MNumber v Text
1 |LastName |Gender Age Location Height Weight Smoker ™
2 |Smith Male 38|County Gen... 71 176
3 Pohnson Male 43|\VA Hospital 69| 163
4 Williams Female 38(St. Mary's ... 64 131
5 ones Female 40| VA Hospital 67 133
& [Brown Female 49| County Gen... 64 119
7 |Davis Female 46|5t. Mary's ... 68 142
8 [Miller Female 33|\VA Hospita 64 142 W
< >
Sheetl

Import Spreadsheets

4x5 table

LastName Gender Age Location

'Smith' } {'Male' } 38
'Johnson' } {'Male' } 43
'Williams'} {'Female'} 38
'Jones’ } {'Female'} 40

e LR

Import Spreadsheet Data as Other Data Types

Height
{'County General Hospital' } 71
{'VA Hospital' } 69
{'St. Mary's Medical Center'} 64
{'VA Hospital' } 67

In addition to tables, you can import your spreadsheet data into the MATLAB workspace as a
timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you

need, use one of these functions.

Data Type of Output

Function

Timetable

readtimetable

Numeric Matrix

readmatrix

Cell Array

readcell

Separate Column Vectors

readvars

See Also
Import Tool | readtable

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-4

. “Read Spreadsheet Data into Table” on page 3-9

. “Access Data in Tables”

3-3

3 Spreadsheets

Read Spreadsheet Data Using Import Tool

3-4

In this section...

“Select Data Interactively” on page 3-4
“Import Data from Multiple Spreadsheets” on page 3-5

“Paste Data from Clipboard” on page 3-6

This example shows how to import data from a spreadsheet into the workspace using the Import Tool
and also to import data from the clipboard.

Select Data Interactively

On the Home tab, in the Variable section, click Import Data I&I Alternatively, in the Current
Folder browser, double-click the name of a file with an extension of . x1s, .x1sx, .xlsb, or .x1lsm.
The Import Tool opens.

Select the data you want to import. For example, the data in the following figure corresponds to data
for three column vectors. You can edit the variable name within the tab, and you can select
noncontiguous sections of data for the same variable.

A B C
Station Temp Date
Number ¥ Number * Datetime ™
1 |Station Temp |DatE |
2 12 |Replaced h}r:NaNEI
3 13)NaN | 10/23/2013)
4 14 “So7| 12/1/2013]

On the Import tab, in the Output Type section, select how you want the data to be imported. The
option you select dictates the data type of the imported data.

Option Selected How Data Is Imported

Column vectors Import each column of the selected data as an
individual m-by-1 vector.

Numeric Matrix Import selected data as an m-by-n numeric array.

String Array Import selected data as an m-by-n string array.

Cell Array Import selected data as a cell array that can
contain multiple data types, such as numeric data
and text.

Table Import selected data as a table.

If you choose to import the data as a matrix or as numeric column vectors, the tool highlights any
nonnumeric data in the worksheet. Each highlight color corresponds to a proposed rule to make the
data fit into a numeric array. For example, you can replace nonnumeric values with NaN. Also, you can
see how your data will be imported when you place the cursor over individual cells.

Read Spreadsheet Data Using Import Tool

[Replace * unimpoertable cells with = MNalM - +

a

UMIMPORTABLE CELLS

You can add, remove, reorder, or edit rules, such as changing the replacement value from NaN to
another value. All rules apply to the imported data only and do not change the data in the file. Specify
rules any time the range includes nonnumeric data and you are importing into a matrix or numeric
column vectors.

Any cells that contain #Error? correspond to formula errors in your spreadsheet file, such as
division by zero. The Import Tool regards these cells as nonnumeric.

V4

When you click the Import Selection button
workspace.

, the Import Tool creates variables in your

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Spreadsheets

If you plan to perform the same import operation on multiple files, you can generate code from the
Import Tool to make it easier to repeat the operation. On all platforms, the Import Tool can generate a
program script that you can edit and run to import the files. On Microsoft Windows systems with
Excel software, the Import Tool can generate a function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named
myfile0l.x1sx through myfile25.x1sx, and you want to import the same range of data,
A2:G100, from the first worksheet in each file. Generate code to import the entire set of files as
follows:

Open one of the files in the Import Tool.
2 From the Import Selection button, select Generate Function. The Import Tool generates code
similar to the following excerpt, and opens the code in the Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet

3 Save the function.

In a separate program file or at the command line, create a for loop to import data from each
spreadsheet into a cell array named myData:

numFiles = 25;

range 'A2:G100';

sheet 1;

myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%s02d.xlsx"',fileNum);
myData{fileNum} = importfile(fileName, sheet, range);
end

https://www.mathworks.com/videos/importing-spreadsheets-into-matlab-101491.html

3 Spreadsheets

3-6

Each cell in myData contains an array of data from the corresponding worksheet. For example,
myData{1l} contains the data from the first file, m\yfile01.x1sx.

Paste Data from Clipboard

In addition to importing data interactively, you can also paste spreadsheet data from the clipboard
into MATLAB.

First, select and copy your spreadsheet data in Microsoft Excel, then use one of the following
methods:

On the Workspace browser title bar, click ¥, and then select Paste.
* Open an existing variable in the Variables editor, right-click, and then select Paste Excel Data.
* Calluiimport -pastespecial.

See Also
readmatrix | readcell | readvars | readtable | detectImportOptions

More About

. “Define Import Options for Tables” on page 3-18
. “Read Spreadsheet Data into Array or Individual Variables” on page 3-7

Read Spreadsheet Data into Array or Individual Variables

Read Spreadsheet Data into Array or Individual Variables

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data. However, sometimes you need to import spreadsheet data as a matrix, a cell
array, or separate variables. Based on your data and the data type you need in the MATLAB®
workspace, use one of these functions:

* readmatrix — Import homogeneous numeric or text data as a matrix.
* readcell — Import mixed numeric and text data as a cell array.
* readvars — Import spreadsheet columns as separate variables.

Read Spreadsheet Data into Matrix

Import numeric data from basic matrix.x1ls into a matrix.

M = readmatrix('basic matrix.xls")

M = 5x4
6 8 3 1
5 4 7 3
1 6 7 10
4 2 8 2
2 7 5 9

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as 'Sheetl' and the Range parameter as
'B1:D3'. The readmatrix function reads a 3-by-3 subset of the data, starting at the element in the
first row and second column of the sheet named 'Sheetl'.

M = readmatrix('basic matrix.xls', 'Sheet', 'Sheetl', 'Range', 'B1:D3"')

M = 3x3
8 3 1
4 7 3
6 7 10

Read Spreadsheet Data into Cell Array

Import the mixed tabular data from airlinesmall subset.xlsx into a cell array.

C = readcell('airlinesmall subset.xlsx');

whos C
Name Size Bytes C(lass Attributes
C 1339x29 4277290 cell

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as '2007' and the Range parameter as
'G2:I11'. The readcell function imports ten rows of data for variables in columns 7, 8, and 9,
from the worksheet named '2007"'.

3 Spreadsheets

3-8

subC = readcell('airlinesmall subset.xlsx','Sheet', '2007', 'Range','G2:I11")

subC=10x3 cell array

{[935]}
10411}

{[935

[N e e N e e e WS ey

"N
"N
"N
"N
"N
"N
"N
"N
"N
"N

e e e e e e e e

Read Spreadsheet Data Columns as Separate Variables

Import the first three columns from airlinesmall subset.xlsx as separate workspace variables.

[Year,Month,DayOfMonth]

Name

DayOfMonth
Month
Year

Size

1338x1
1338x1
1338x1

readvars('airlinesmall subset.xlsx');
whos Year Month DayOfMonth

Class Attributes

double
double
double

You can also select which subset to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, import ten rows of the column DayOfMonth from the worksheet named
'2004"'. Specify the column and number of rows using the Range parameter.

DayOfMonth

DayOfMonth

26
10
21
24
20
20

1

2
30
11

See Also

readtable | readmatrix | readcell | readvars

readvars('airlinesmall subset.xlsx', 'Sheet', '2004', 'Range','C2:C11")

10x1

More About
. “Read Spreadsheet Data Using Import Tool” on page 3-4

. “Read Spreadsheet Data into Table” on page 3-9

. “Read Collection or Sequence of Spreadsheet Files” on page 3-12

Read Spreadsheet Data into Table

Read Spreadsheet Data into Table

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data, as well as variable and row names. You can read data into tables interactively
or programmatically. To interactively select data, click Import Data on the Home tab, in the
Variable section. To programmatically import data, use one of these functions:

* readtable — Read a single worksheet.
* spreadsheetDatastore — Read multiple worksheets or files.

This example shows how to import spreadsheet data programmatically using both functions. The
sample data, airlinesmall subset.xlsx, contains one sheet for each year between 1996 and
2008. The sheet names correspond to the year, such as 2003.

Read All Data from Worksheet

Call readtable to read all the data in the worksheet called 2008, and then display only the first 10
rows and columns. Specify the worksheet name using the Sheet name-value pair argument. If your
data is on the first worksheet in the file, you do not need to specify Sheet.

T = readtable('airlinesmall subset.xlsx', 'Sheet', '2008"');
T(1:10,1:10)

ans=10x10 table
Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime

2008 1 3 4 1012 1010 1136 1135
2008 1 4 5 1303 1300 1411 1415
2008 1 6 7 2134 2115 2242 2220
2008 1 7 1 1734 1655 54 30
2008 1 8 2 1750 1755 2018 2035
2008 1 9 3 640 645 855 905
2008 1 10 4 1943 1945 2039 2040
2008 1 11 5 1303 1305 1401 1400
2008 1 13 7 1226 1230 1415 1400
2008 1 14 1 1337 1340 1623 1630

Read Selected Range from Specific Worksheet

From the worksheet named 1996, read only 10 rows of data from the first 5 columns by specifying a
range, 'Al:E11'. The readtable function returns a 10-by-5 table.

T selected = readtable('airlinesmall subset.xlsx', 'Sheet','1996', 'Range', 'Al:E11")

T selected=10x5 table
Year Month DayofMonth DayOfWeek DepTime

1996 1 18 4 2117
1996 1 12 5 1252
1996 1 16 2 1441
1996 1 1 1 2258
1996 1 4 4 1814

3-9

3 Spreadsheets

3-10

1996 1 31 3 1822
1996 1 18 4 729
1996 1 26 5 1704
1996 1 11 4 1858
1996 1 7 7 2100

Convert Variables to Datetimes, Durations, or Categoricals

During the import process, readtable automatically detects the data types of the variables.
However, if your data contains nonstandard dates, durations, or repeated labels, then you can convert
those variables to their correct data types. Converting variables to their correct data types lets you
perform efficient computations and comparisons and improves memory usage. For instance,
represent the variables Year, Month, and DayofMonth as one datetime variable, the
UniqueCarrier as categorical, and ArrDelay as duration in minutes.

data = T(:,{'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'});
data.Date = datetime(data.Year,data.Month,data.DayofMonth);
data.UniqueCarrier = categorical(data.UniqueCarrier);

data.ArrDelay = minutes(data.ArrDelay);

Find the day of the year with the longest delay, and then display the date.

ind = find(data.ArrDelay == max(data.ArrDelay));
data.Date(ind)

ans = datetime
07-Apr-2008

Read All Worksheets from Spreadsheet File

A datastore is useful for processing arbitrarily large amounts of data that are spread across multiple
worksheets or multiple spreadsheet files. You can perform data import and data processing through
the datastore.

Create a datastore from the collection of worksheets in airlinesmall subset.x1lsx, select the
variables to import, and then preview the data.

ds = spreadsheetDatastore('airlinesmall subset.xlsx');
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'};
preview(ds)

ans=8x5 table
Year Month DayofMonth UniqueCarrier ArrDelay

1996 1 18 {'HP'} 6
1996 1 12 {'HP'} 11
1996 1 16 {'HP'} -13
1996 1 1 {'HP'} 1
1996 1 4 {'US'} -9
1996 1 31 {'Us'} 9
1996 1 18 {'Us'} -2
1996 1 26 {'NW'} -10

Read Spreadsheet Data into Table

Before importing data, you can specify what data types to use. For this example, import
UniqueCarrier as a categorical variable.

ds.SelectedVariableTypes(4) = {'categorical'};

Import data using the readall or read functions. The readall function requires that all the data
fit into memory, which is true for the sample data. After the import, compute the maximum arrival
delay for this dataset.

alldata = readall(ds);
max(alldata.ArrDelay)/60

ans = 15.2333

For large data sets, import portions of the file using the read function. For more information, see
Read Collection or Sequence of Spreadsheet Files.

See Also
readtable | spreadsheetDatastore

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-4
. “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
. “Read Collection or Sequence of Spreadsheet Files” on page 3-12

3-11

3 Spreadsheets

Read Collection or Sequence of Spreadsheet Files

3-12

When you have data stored across multiple spreadsheet files, use spreadsheetDatastore to
manage and import the data. After creating the datastore, you can read all the data from the

collection simultaneously, or you can read one file at a time.

Data

If the folder C:\Data contains a collection of spreadsheet files, then capture the location of the data
in Location. The data used in this example contains 10 spreadsheet files, where each file contains

10 rows of data. Your results will differ based on your files and data.

location = 'C:\Data';
dir(location)
File0l.x1ls File02.xls File03.xls File04.x1s
Create Datastore
Create a datastore using the location of the files.
ds = spreadsheetDatastore(location)
ds =
SpreadsheetDatastore with properties:
Files: {
"C:\Data\File0l.x1ls"';
"C:\Data\File02.x1ls"';
'C:\Data\File03.xls"
... and 7 more
}
AlternateFileSystemRoots: {}
Sheets: ''
Range: "'
Sheet Format Properties:
NumHeaderLines: 0
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
VariableTypes: {'char', 'char', 'double' ... and 7 more}
Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}

SelectedVariableTypes: {'char', 'char', 'double' ... and 7 more}
ReadSize: 'file'

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, then you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

File05.x1ls File06.x1s

Read Collection or Sequence of Spreadsheet Files

ans = 1Ix2

100 10

Alternatively, you can import the data one file at a time using the read function. To control the
amount of data imported, before you call read, adjust the ReadSize property of the datastore. You
can set the ReadSizeto 'file', 'sheet’, or a positive integer.

« IfReadSizeis 'file’', then each call to read returns data one file at a time.

¢« IfReadSizeis 'sheet', then each call to read returns data one sheet at a time.

* IfReadSize is a positive integer, then each call to read returns the number of rows specified by
ReadSize, or fewer if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table

LastName Gender
'Smith' 'Male'
'Johnson' 'Male'
'Williams' 'Female'
'Jones' 'Female'
'Brown' 'Female'
'Davis’ 'Female'
'Miller' 'Female'
'Wilson' 'Male'
'Moore' 'Male'
'Taylor' 'Female’

secondFile = read(ds) % reads

secondFile=10x10 table

LastName Gender
'"Anderson' 'Female'
'"Thomas' 'Female'
'Jackson' 'Male'
'White' 'Male'
'Harris' 'Female'
'Martin' 'Male'
'Thompson' 'Male'
'Garcia' 'Female'
'Martinez' 'Male'
'Robinson' 'Male'
See Also

readtable | spreadsheetDatastore

Location Height Weight Smoker
'"County General Hospital' 71 176 "true'
'VA Hospital' 69 163 'false'
'St. Mary's Medical Center' 64 131 'false'
'VA Hospital' 67 133 'false'
"County General Hospital' 64 119 'false'
'St. Mary's Medical Center' 68 142 'false'
'VA Hospital' 64 142 "true'
'VA Hospital' 68 180 'false'
'St. Mary's Medical Center' 68 183 'false'
'"County General Hospital' 66 132 'false'
file

Location Height Weight Smoker
'"County General Hospital' 68 128 'false'
'St. Mary's Medical Center' 66 137 'false'
'VA Hospital' 71 174 'false'
'VA Hospital' 72 202 "true'
'St. Mary's Medical Center' 65 129 'false'
'VA Hospital' 71 181 "true'
'St. Mary's Medical Center' 69 191 "true'
'VA Hospital' 69 131 "true'
'County General Hospital' 70 179 'false'
'"County General Hospital' 68 172 'false'

3-13

3 Spreadsheets

More About
. “Read Spreadsheet Data into Table” on page 3-9

3-14

Write Data to Excel Spreadsheets

Write Data to Excel Spreadsheets

In this section...

“Write Tabular Data to Spreadsheet File” on page 3-15

“Write Numeric and Text Data to Spreadsheet File” on page 3-15
“Disable Warning When Adding New Worksheet” on page 3-16
“Format Cells in Excel Files” on page 3-16

Write Tabular Data to Spreadsheet File

To export a table in the workspace to a Microsoft® Excel® spreadsheet file, use the writetable
function. You can export data from the workspace to any worksheet in the file, and to any location
within that worksheet. By default, writetable writes your table data to the first worksheet in the
file, starting at cell Al.

For example, create a sample table of column-oriented data and display the first five rows.

load patients.mat
T = table(LastName,Age,Weight, Smoker);

T(1:5,:)
ans=5x4 table
LastName Age Weight Smoker

{'Smith' } 38 176 true
{'Johnson' } 43 163 false
{'Williams'} 38 131 false
{'Jones" } 40 133 false
{'Brown' } 49 119 false

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx, starting at cell
D1. To specify the portion of the worksheet you want to write to, use the Range name-value pair
argument. By default, writetable writes the table variable names as column headings in the
spreadsheet file.

filename = 'patientdata.xlsx';
writetable(T, filename, 'Sheet',1, 'Range', 'D1")

Write the table T without the variable names to a new sheet called 'MyNewSheet'. To write the data
without the variable names, specify the name-value pair WriteVariableNames as false.

writetable(T, filename, 'Sheet', 'MyNewSheet', 'WriteVariableNames', false);

Write Numeric and Text Data to Spreadsheet File
To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the

writematrix orwritecell functions. You can export data in individual numeric and text
workspace variables to any worksheet in the file, and to any location within that worksheet. By

3-15

3 Spreadsheets

3-16

default, the import functions write your matrix data to the first worksheet in the file, starting at cell
Al.

For example, create a sample array of numeric data, A, and a sample cell array of text and numeric
data, C.

A = magic(5)
C={'Time', 'Temp'; 12 98; 13 'x'; 14 97}
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
C =
'"Time' '"Temp'
[12] [98]
[13] "x'
[14] [97]

Write array A to the 5-by-5 rectangular region, E1: I5, on the first sheet in a new spreadsheet file
named testdata.xlsx.

filename = 'testdata.xlsx';
writematrix (A, filename, 'Sheet',1, 'Range', 'E1:I5")

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named
Temperatures. You can specify range using only the first cell.

writecell(C, filename, 'Sheet', 'Temperatures', 'Range', 'B2');

writecell displays a warning because the worksheet, Temperatures, did not previously exist, but
you can disable this warning.

Disable Warning When Adding New Worksheet

If the target worksheet does not exist in the file, then the writetable and writecell functions
display this warning:

Warning: Added specified worksheet.

For information on how to suppress warning messages, see “Suppress Warnings”.

Format Cells in Excel Files

To write data to Excel files on Windows systems with custom formats (such as fonts or colors), access
the COM server directly using actxserver rather than writetable, writetimetable,
writematrix, or writecell. For example, Technical Solution 1-QLD4K uses actxserver to
establish a connection between MATLAB and Excel, write data to a worksheet, and specify the colors
of the cells.

https://www.mathworks.com/matlabcentral/answers/102070-how-do-i-write-data-to-an-excel-spreadsheet-with-a-custom-cell-background-color-and-custom-font-colo

Write Data to Excel Spreadsheets

For more information, see “Get Started with COM”.

See Also
writematrix |writ